State Pollutant Discharge Elimination System (SPDES)

INDUSTRIAL APPLICATION FORM NY-2C

For New Permits and Permit Modifications to Discharge Industrial Wastewater and Storm Water

Section I - Permittee and Facility Information

	Please type or print the reque	ested inforn	nation.	
	eave blank if for new discharge)			
SPDES Number:	DEC Number:			
Permit Action Requested: (CXX A NEW proposed discharge A MODIFICATION of the existing poes this request include an increase in the XYES - Describe the increase: NO - Go to Item 3. below.		harge curre facility to the groundway water out week at ing durin	ently without permit the waters of the State? ter and storm water fall to Flushing Bay a maximum rate of 11 g the next two basek	v. Dewatering to be 10,000 gpd for an oall off seasons of
Permittee Name and Address				
Name New York City Econom	ic Development Corporat	ion	Attention Melvin	A. Glickman, P.E.
Street Address 110 William	Street			
City or Village New York		State N	ZIP Code 1003	8
Oli Ool / Idai Ooo	opment Site 126th Street and Sanitary Sewer I d Central Parkway, Outfall to Flu	shing Bay		68
Town Willets Point		County	Queens	
Telephone 212-312-3731	FAX		NYTM - E	NYTM - N
Fax Map Info (New York City, Nassau Cou	nty and Suffolk County only)			
Section	Block 1787	Subblock		Lot 1 & 2
Facility Contact Person				
Name Melvin A. Glickmar	n, P.E.		Title Executive	Vice President
Street Address 110 William St	reet			P.O. Box
City or Village New York			State NY	ZIP Code
Telephone 212-312-3731	FAX		E-Mail or Internet mgli	ckman@nycedc.com
. Discharge Monitoring Report (DMR) Mailing Address			
Mailing Name Melvin A. Glick			•	
Street Address 110 William St	reet			P.O. Box
City or Village New York			State NY	ZIP Code 10038
Telephone 212-312-3731	FAX		E-Mail or Internet mgli	ckman@nycedc.com
Name and Title of person responsible for s	ligning DMRs	ident /	Signature	

INDUSTRIAL APPLICATION FORM NY-2C Section I - Permittee and Facility Information

Facility Name:	Willets Point Development	Site SP	DES Number:
7. Summariz	e the outfalls present at the facil	ty:	
Outfall Number	Receiving Water	Type of discharge	
001	Flushing Bay	Surface Wate	er
proof, either b way.	y indication on the map or other documenta		wells, and attach it to this application. Also submit rges exists from the facility property to a public right o
9. Water Flow SEE ATT			
SEE AII	ACHED		

INDUSTRIAL APPLICATION FORM NY-2C Section I - Permittee and Facility Information

Facility Name: W	Jillets Point Deve	elopment Sit	 ce		SPDES Number:		
0. Nature of k	ousiness: (Describe the	e activities at the fa	acility and	the date(s) that op	eration(s) at the facility of	commenced)	
	tion of a new sto	rm sewer al	ong 12	86th Street,	generally bet	ween 35th A	venue
	tion of a new san westward adjacent	_					
	tion dewatering w					·.	
Priority 1	digit SIC codes which		ır facilit	Priority 3	Description:	D	
1 7 9 4 Priority 2 1 6 2 3	Description:		ewer	1 6 1 1 Priority 4 1 6 2 3	Description:	on Beneath S on of Sanita	
X NO - Go	to Item 13. below. strial Category	40 CFR		Indi	ustrial Category	40	CFR
	ourial Gategory		Subpart	11101	John Galogory	Part	Subpart
	facility manufacture, h ous organisms?	andle, or disc	harge re	ecombinant-D	NA, pathogens, or	other potentia	lly infectiou
YES - A	ttach a detailed explanation	to this application.					
YES - A	ttach a detailed explanation to Item 14 below.		orage a	rea discharge	d by your facility?		
YES - A X NO - Go 4. Is storm ru YES - Co	ttach a detailed explanation to Item 14 below. unoff or leachate from omplete the following table, and	n a material sto	•	•		iagram in Item 9.	
YES - A X NO - Go 4. Is storm ru YES - Co	ttach a detailed explanation to Item 14 below. unoff or leachate from emplete the following table, at to Item 15 on the following parts.	n a material sto	•	tockpile(s) and dis		iagram in Item 9. Runoff control o	levices
YES - A X NO - Go 4. Is storm re YES - Co X NO - Go	ttach a detailed explanation to Item 14 below. unoff or leachate from emplete the following table, at to Item 15 on the following parts.	n a material stond show the location	•	tockpile(s) and dis	charge point(s) on the di		levices

Name and official title (type or print)

INDUSTRIAL APPLICATION FORM NY-2C Section I - Permittee and Facility Information

5. Facility Ownership: Corporate Sole Pro	(Place an "X" in	n the appropriate box	k) Municipa	ı X	Stat	е	Federal	Other
Are any of the discharges app				!!!4.	Ye 	s	No X	
Issuing Agency		t Type	Permit Num		': 		Permit Status	
	Dischause	(MOGA)				Active	Applied for	Inactive
NYCDEP	Discharge						Х	
NYCDEP	Temporary (Connection					х	
NYSDEC	Long Islan	d Well					х	
NYSDEC	Tidal Wetla	and Program					Х	
NYSDEC	Protection	of Waters					Х	
USACE	NWP-7						Х	
USACE	NWP-33						Х	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
. Laboratory Certifica								
Were any of the analy X YES - Complete the fo	ollowing table.		nis application p			contrac		consulting fi
Were any of the analy X YES - Complete the fo	ollowing table.		nis application p	Teleph			et laboratory or a c	consulting fi
Were any of the analy X YES - Complete the fo	ollowing table. low. ng firm			Teleph (area	none	umber)		
Were any of the analy X YES - Complete the fo	ollowing table. low. Ing firm Addres 8 W Wes Sts 59-	alkup Drive	01581 wenue	Teleph (area o	none code and n	umber) 220	Pollutants analyzed	d

Melvin A. Glickman, P.E.

Telephone number

Date signed

FAX number

INDUSTRIAL APPLICATION FORM NY-2C Section I - Permittee and Facility Information

Facility Name:	Willets Point Development Site	SPDES Number:

19. Industrial Chemical Survey (ICS)

Complete all information for those substances your facility has used, produced, stored, distributed, or otherwise disposed of in the past five (5) years at or above the threshold values listed in the instructions. Include substances manufactured at your facility, as well as any substances that you have reason to know or believe present in materials used or manufactured at your facility. Do not include chemicals used only in analytical laboratory work, or small quantities of routine household cleaning chemicals. Enter the name and CAS number for each of the chemicals listed in Tables 6-10 of the instructions, and the table number which lists the chemical. You may use ranges (e.g. 10-100 lbs., 100-1000 lbs., 1000-10000 lbs., etc.) to describe the quantities used on an annual basis as well as for the amount presently on hand. For those chemicals listed in Tables 6, 7, or 8 which are indicated as being potentially present in the discharge from one or more outfalls at the facility, indicate which outfalls may be affected in the appropriate column below, and include sampling results in Section III of this application for each of the potentially affected outfalls. Make additional copies of this sheet if necessary.

application for each of the potentially affe	cted outfalls	s. Make additional co				T	
			Average	Amount	Units	Purpose of Use	Present in
Name of Substance	Table	CAS Number	Annual	Now On	(gallons,	(see codes in Table 2 of	
			Usage	Hand	lbs, etc)	instructions)	(Outfall(s)?)
None - Not Applicable							
					1		

This completes Section I of the SPDES Industrial Application Form NY-2C. Section II, which requires specific information for each of the outfalls at your facility, and Section III, which requires sampling information for each of the outfalls at your facility, must also be completed and submitted with this application.

b. Process Wastewater

c. Process Wastewater

d. Process Wastewater

e. Contact Cooling Water

k. Other discharge (specify):

I. Other discharge (specify):

State Pollutant Discharge Elimination System (SPDES)

INDUSTRIAL APPLICATION FORM NY-2C

For New Permits and Permit Modifications to Discharge Industrial Wastewater and Storm Water **Section II - Outfall Information**

Please type or print the requested information

			riease	type or prii	it the requested informa	uon.				
Facility Name: Wille	ts Point D	evel	opmen	t Site		SPDES N	umber:			
1. Outfall Number and	Location									
Outfall No.: 001										
Latitude 40°45 '	Longitu	ide 73 °	50	45 "	Receiving Water	Flushing	g Bay			
2. Type of Discharge a	and Discharç	ge Rat	e (Lis	t all informa	ation applicable to this ou	utfall)		I		
			Units	3					Units	3
	Volume/Flow	MGD	GPM	Other (specify)			Volume/Flow	MGD	GPM	Other (specify)
a. Process Wastewater					f. Noncontact Cooling V	Vater				

g. Remediation System Discharge

h. Boiler Blowdown

j. Sanitary Wastewater

i. Storm Water

76.39

Χ

3. List process information for the Process Wastewater streams identified in 2.a-d above:

a. Name of the process contributing	n. Name of the process contributing to the discharge Dewatering Treatment System						
Describe the contributing process	Construction Dewatering of	Category	Quantity per day	Units of measure Gallons			
	Groundwater	Subcategory	110,000	Gallons			
b. Name of the process contributing	to the discharge			Process SIC code:			
Describe the contributing process		Category	Quantity per day	Units of measure			
		Subcategory					
c. Name of the process contributing t	to the discharge			Process SIC code:			
Describe the contributing process		Category	Quantity per day	Units of measure			
		Subcategory					
d. Name of the process contributing	to the discharge			Process SIC code:			
Describe the contributing process		Category	Quantity per day	Units of measure			
		Subcategory					

4. Expected or Proposed Discharge Flow Rates for this outfall:

a. Total Annual Discharge	b. Daily Minimum Flow	c. Daily Average Flow	d. Daily Maximum Flow	e. Maximum Design flow rate
^{19.40} MG	0.053 MGD	0.106 MGD	0.11 MGD	0.144 MGD

INDUSTRIAL APPLICATION FORM NY-2C Section II - Outfall Information

							0	utfall No.:	00	1
Facility Name: Will	Lets 1	Point Devel	opment Si	.te			SI	PDES Numbe		
5. Is this a seasonal YES - Complete to X NO - Go to Item 6	the follo	wing table.								
			Discharge	frequency				Flow		
Operations con	ntributing	flow (list)	Batches	Duration	Flow ra	te per day	Total	olume per	Units	Duration
			per year	per batch	LTA	Daily Max		charge		(Days)
6. Water Supply Sou	ırce	(indicate all that ap	oply)							
		Name or o	wner of water	supply source)	Volume or flo	ow rate	Uı	nits (check on	ie)
Municipal Supply								MGD	GPD	GPM
Private Surface Water So	ource							MGD	GPD	GPM
Private Supply Well								MGD	GPD	GPM
Other (specify)		Shallow	Groundwat	cer		110,000)	MGD	X GPD	GPM
7. Outfall configurat	tion: (S	Surface water discl	harges only)							
A. Where is the disch	arge p	oint located wit	th respect to	the receiv	ing wat	er?				
In the streambank:	σ.		·		J					
In the stream:										
Within a lake or ponde	d water:									
Within an estuary:			Attach Suppler	nent C, MIXIN	IG ZONE	REQUIREME	NTS FO	R DISCHARO	SES TO ESTU	JARIES.
Discharge is equipped	with diff	fuser:	Attach descript	ion, including	configura	tion and plan	drawing	of diffuser, if	used.	
B. If located in a stream, a	pproxima	ately what percent	age of stream	width from sh	ore is the	discharge poi	nt locate	d?		
10%	2	5%	50%	Other:						
C. If located in a stream, do	escribe	the stream geome	try in the gener	ral vicinity of t	he discha	rge point, und	er low flo	w conditions:		
Stream width	Stre	eam depth	Stream v	elocity	Are the	results of a m	nixing/diff	usion study a	ttached?	YES
Feet		Feet		Feet/Sec						NO

Section II - Outfall Information

Facility Name: Willets Point Development Site Thermal Discharge Criteria your facility one of the applicable types of facilities listed in the instructions, and does the temperature of this discharge exceed the receiving merature by greater than three (3) degrees Fahrenheil? YES - Complete the following table. Information on the intake and discharge configuration of this outfall is attached. No - Go to Item 9. below. Discharge Temperature, deg. F Average change in change in change in emperature (delta 1) Average change in temperature (delta 1) Maximum following table and complete temperature and with the configuration of this outfall is attached. Are any water treament chemicals or additives that are used by your facility subsequently discharged three this outfall? YES - Complete the following table and complete pages 1 of 3 and 2 of 3 of Form WTCFX for each water treatment chemical listed. No - Go to Item 10. below. Manufacturer WTC trade name Manufacturer WTC trade name WTC trade name Manufacturer WTC trade name Testing date(s) Start Finish (D.)
Thermal Discharge Criteria your facility one of the applicable types of facilities listed in the instructions, and does the temperature of this discharge exceed the receiving personal properature by greater than three (3) years? YES - Complete the following table. Discharge Temperature, deg. F Average Maximum temperature temperature (delta T) Discharge Temperature, deg. F Average Maximum temperature temperat
our facility one of the applicable types of facilities listed in the instructions, and does the temperature of this discharge exceed the receiviperature by greater than three (3) degrees Fahrenheit? YES - Complete the following table. NO - Go to Item 9. below. Discharge Temperature, deg. F. Average Maximum Interperature (delta T) Duration of maximum discharge temperature (delta T) Maximum Interperature (
Discharge Temperature, deg. F Duration of maximum discharge temperature Maximum discharge temperature Maximum discharge temperature Maximum temperature Nor sper days per
Maximum change in perature change in temperature t
Are any water treament chemicals or additives that are used by your facility subsequently discharged threating outfall? YES - Complete the following table and complete pages 1 of 3 and 2 of 3 of Form WTCFX for each water treatment chemical listed. NO - Go to Item 10. below. Manufacturer WTC trade name Manufacturer WTC trade name Has any biological test for acute or chronic toxicity been performed on this outfall or on the receiving water in relation to this outfall in the past three (3) years? YES - Complete the following table. X NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
this outfall? YES - Complete the following table and complete pages 1 of 3 and 2 of 3 of Form WTCFX for each water treatment chemical listed. NO - Go to Item 10, below. Manufacturer WTC trade name Manufacturer WTC trade name Has any biological test for acute or chronic toxicity been performed on this outfall or on the receiving water in relation to this outfall in the past three (3) years? YES - Complete the following table. X NO - Go to Item 11, on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subn
Has any biological test for acute or chronic toxicity been performed on this outfall or on the receiving water in relation to this outfall in the past three (3) years? YES - Complete the following table. K NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Submit
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm
water in relation to this outfall in the past three (3) years? YES - Complete the following table. NO - Go to Item 11. on the following page. Water tested Purpose of test Type of test Chronic Subject species Testing date(s) Subm

Water tested	Purpose of test	Type of test	Chronic	Subject species	Testing	date(s)	Submitted?
			or Acute?		Start	Finish	(Date)

INDUSTRIAL APPLICATION FORM NY-2C

YES - Complete the following table. Treatn NO - Go to Item 12 below.	ient codes are listed i	Treatment				Flow Rate
Treatment process		Code(s)	Treatme	ent used for the removal of	: (inclu	ide units)
Settling Tanks		1-U	Tot	cal Solids	110,0)00 gpd
Oil/water separator		6-A	Pe	etroleum	100	gpm
Bag filters / filtration		1-N		al Solids and orbed Chemicals	100	gpm
Carbon Adsorption		2-A	Or	rganics	100	gpm
			-			
			_			
Does this facility have either a complete duction, which will materially alter to YES - Complete the following table. NO - Go to Section III on the following page	he quantity and/	_	the disc		tfall?	anges in
			? (List)	production increase?	Required	on Dato(s)

This completes Section II of the SPDES Industrial Application Form NY-2C. Section I, which requires general information regarding your facility, and Section III, which requires sampling information for each of the outfalls at your facility, must also be completed and submitted with this application.

INDUSTRIAL APPLICATION FORM NY-2C Section III - Sampling Information

	Facility Name: Wi	illets Point Development Site	SPDES No.:	Outfall No.: 001
--	-------------------	-------------------------------	------------	------------------

1. Sampling Information - Conventional Parameters

Provide the analytical results of at least one analysis for every pollutant in this table. If this outfall is subject to a waiver as listed in Table 5 of the instructions for one or more of the parameters listed below, provide the results for those parameters which are required for this type of outfall.

PLEASE PRINT OR TYPE IN THE			LY. You may rep	ort some o	r all of this inforr	nation on se	parate sheets	(using the san	ne format) ins			
			Et	fluent data				Un	its	Intake	e data (optio	nal)
Pollutant	a. Maximun	n daily value	b. Maximum 30	day value	c. Long terr	n average		a. Concentration	b. Mass	a. Long term a	verage value	b. Number of
	1. Concentration	2. Mass	1. Concentration	2. Mass	1. Concentration	2. Mass	analyses			1. Concentration	2. Mass	analyses
a. Biochemical Oxygen Demand, 5 day (BOD)	SEE ATT	ACHED L	ABORATORY	DATA								
b. Chemical Oxygen Demand (COD)												
c. Total Suspended Solids (TSS)												
d. Total Dissolved Solids (TDS)												
e. Oil & Grease												
f. Chlorine, Total Residual (TRC)												
g. Total Organic Nitrogen (TON)												
h. Ammonia (as N)												
i. Flow	Value		Value		Value					Value		
j. Temperature, winter	Value		Value		Value					Value		
k. Temperature, summer	Value		Value		Value					Value		
I. pH	Minimum	Maximum	Minimum N	Maximum						Minimum	Maximum	

2. Sampling Information - Priority Pollutants, Toxic Pollutants, and Hazardo<u>us S</u>ubstances

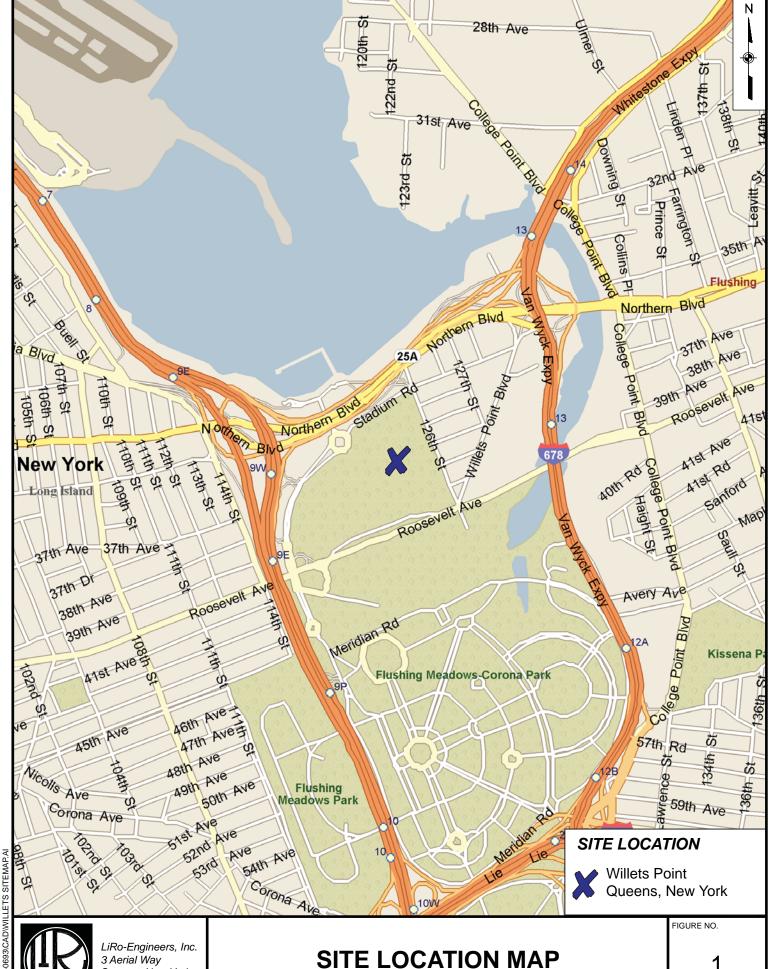
a. Primary Industries:	Does the discharge from this outfall contain process wastewater?	X	Yes - Go to Item ii. below. No - Go to Item b. below.
	ii. Indicate which GC/MS fractions have been tested for: Volatiles:		Acid: Base/Neutral: Pesticide:
b. All applicants:	i. Do you know or have reason to believe that any of the pollutants listed in Tables 6, 7, or 8 of the instructions are present in the discharge from this outfall?	Х	Yes - Concentration and mass data attached. No - Go to Item ii. below.
	ii. Do you know or have reason to believe that any of the pollutants listed in Table 9 or Table 10 of the instructions, or any other toxic, harmful, or injurious chemical substances not listed in Tables 6-10, are present in the discharge from this outfall?	X	Yes - Source or reason for presence in discharge attached Yes - Quantitative or qualitative data attached No

INDUSTRIAL APPLICATION FORM NY-2C Section III - Sampling Information

Facility Name:	Willets Point Development Site	SPDES No.:	Outfall No.: 001

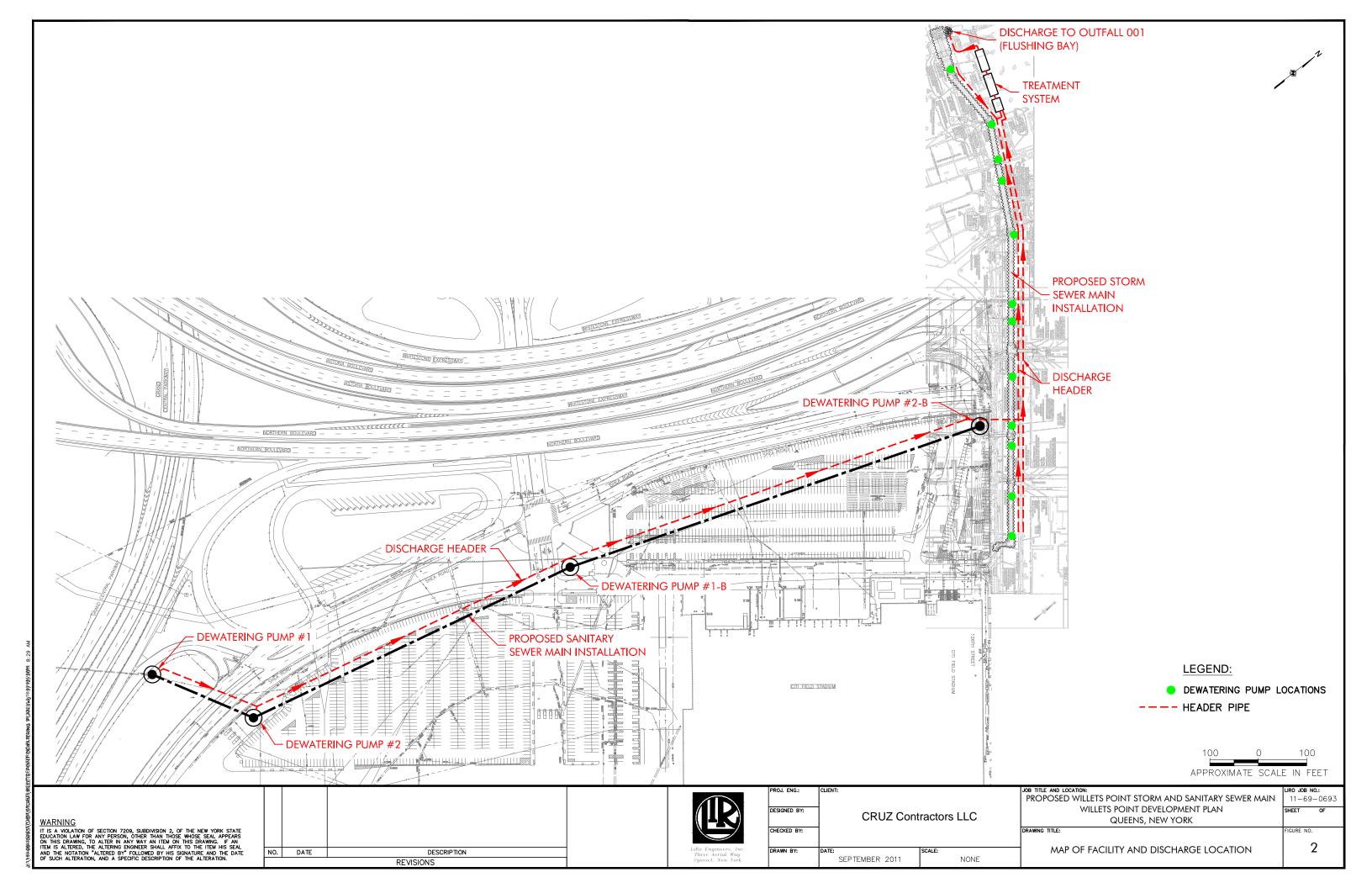
3. Projected Effluent Quality - Priority Pollutants, Toxic Pollutants, and Hazardous Substances
Provide analytical results of at least one analysis for each pollutant that you know or have reason to believe is present in this discharge, as well as for any GC/MS fractions and metals required to be sampled from Section III Forms, Item 2.a on the preceding page.

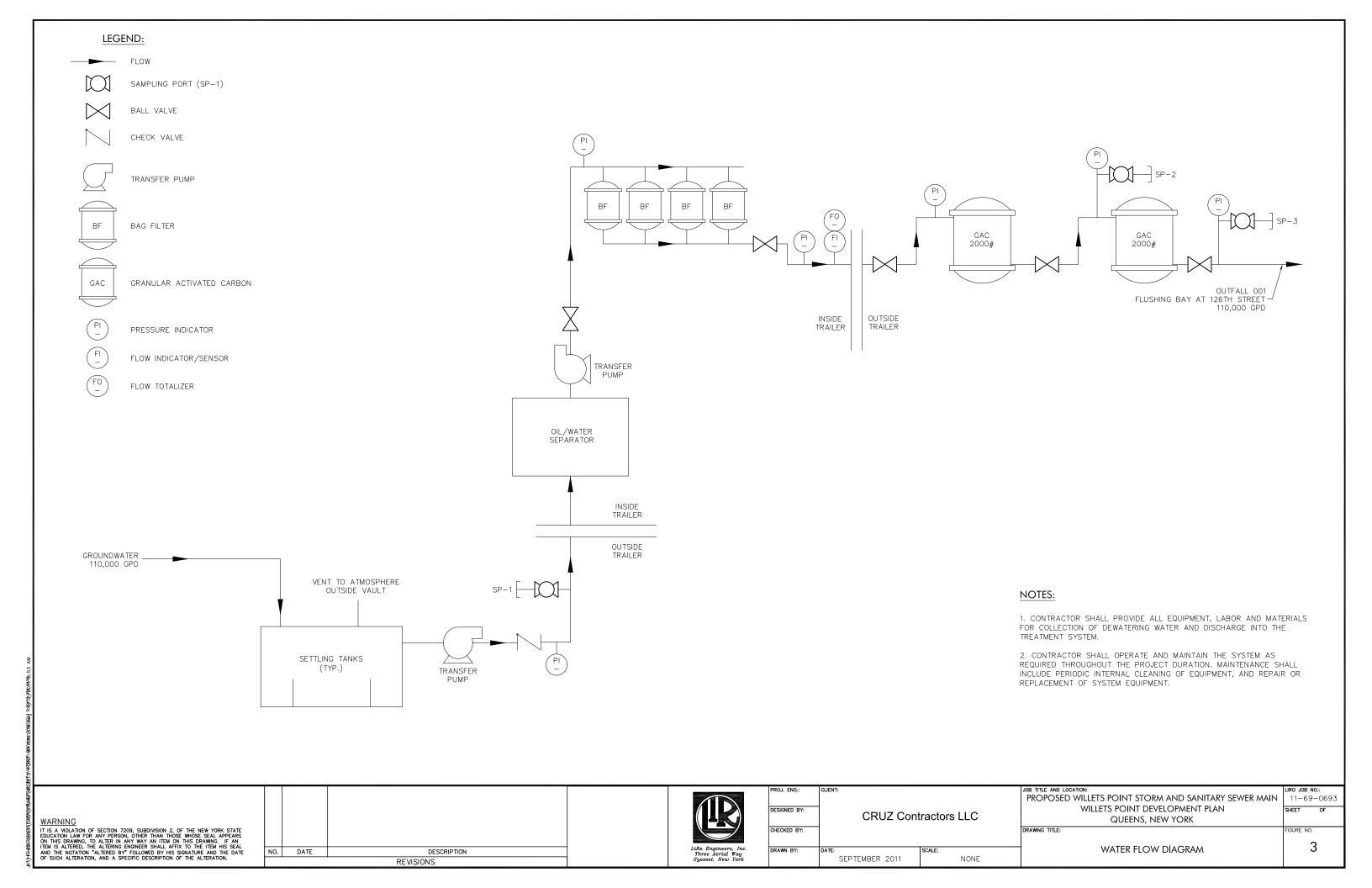
List the name and CAS number for each pol or 8, provide the results of at least one analys 9, or any other toxic pollutant not listed in Tal as many copies of this table as necessary for	sis for that po bles 6-10, yo	ollutant, and ou	determine th de concentra	ne mass disc ation and ma	charge based ass data (if a	on the flow i	ate reported	l in Item 1.i. nation for the	For each po ir presence	llutant listed	from Table	Page	of
Pollutant and CAS Number				Effluent dat	a			Uı	nits	Inta	ke data (opti	onal)	Believed
	a. Maximun	n daily value		30 day value <i>(if</i>		verage value (if	d. Number of	a. Concen-	b. Mass	a. Long term	average value	d. Number of	present, no sampling
	(4)0	(O) M		lable)		lable)	analyses	tration		(4)0	(0) 14	analyses	results
	(1)Concen- tration	(2) Mass	(1)Concen- tration	(2) Mass	(1)Concen- tration	(2) Mass				(1)Concen- tration	(2) Mass		available
	tration		tration		tration					tration			
CAS Number:	SEE A	TTACHED	LABOR	ATORY I	ATA								
o, to Hambot.													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													
CAS Number:													


INDUSTRIAL APPLICATION FORM NY-2C Section III - Sampling Information

Facility Name: Willets Point Development Site	SPDES No.:	Outfall No.: 001

Existing Effluent Quality - Priority Pollutants, Toxic Pollutants, and Hazardous Substances


Provide analytical results for the last three (3) years for each pollutant that you know or have reason to believe present in this discharge from this outfall, as well as for any GC/MS fractions and metals required to be sampled from Section III Forms, Item 2.a for this discharge.


to be sump		inio, item z.a ioi tille al	Johange.					
Make as many conecessary for ead list the results froon each copy of the second	opies of this table as ch outfall. You can om 24 sampling dates this page.	Parameter name:	Parameter name:	Parameter name:	Parameter name:	Parameter name:	Parameter name:	Parameter name:
Page	Of	CAS Number:	CAS Number:	CAS Number:	CAS Number:	CAS Number:	CAS Number:	CAS Number:
	Flow rate	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Date	Units:	Units:	Units:	Units:	Units:	Units:	Units:	Units:
NOT APPI	ICABLE							
	1							1

3 Aerial Way Syosset, New York

1

TABLE 1 Water Sample Analytical Summary Willets Points, Queens, New York

SAMPLING DATE 1,00.8 1,0	COLUMN S. IS				400.07		400.00		T CONTA	
LiAB ID NAC NACK NACK	SAMPLE ID	New York	New York		126-07		126-G9		GW-4	
March Martin Ma		T.O.G.S.	T.O.G.S.	Units						
Total Matels			AWQS I/SB			_				
Aliminum					vvater	_ Q	vvater	Q	vyarer	Q
Barum										
Calcium						QM-07				
Copper		+								
Trans										
Magnesium 35 mg/L 48.9 QM-07 NA 70.8 Managamese 0.3 mg/L 0.86 QM-07 NA 0.273 MANA 0.273 MANA 0.273 MANA 0.273 MANA 0.273 MANA 0.01 JANA NA										В
Manganese 0.3 mg/L 0.86 NA 0.273 Nokel Nokel 0.11 mg/L NA 0.01 J NA No Nokel 0.11 mg/L NA 0.01 J NA No Nokel 0.11 mg/L 0.023 NA NO NA NO Nokel 0.11 mg/L 0.018 NA NO Nokel 0.014 mg/L 0.018 NA 18.5 0.060 NA 19.5 0.060 NA 0.006 NA										
Maybdornum, Total						QM-07				
Note		0.3								
Potessium -								J		
Sodism 20 GA mg/L mg		0,1								
Vanadium										QB-01, B
Dissolved Metals	Sodium		GA	mg/L	311	QM-07				
Dissolved Metals	Vanadium	0.014		mg/L	0.019					
Barlum	Zinc	0,066	I SB	mg/L	0.099	L _k	NA		0,033	В
Barlum										
Calcium	Dissolved Metals				Not Analyzed		Not Analyzed			
Copper		1								
Copper	Calcium	-		mg/L						
Manganesis	Copper	0.2		mg/L					0.004	В
Magnesium 35 mg/L									24.8	
Manganese 0.3		35							68.3	
Potassium		0.3							0.227	
Sodium									18.5	QB-01, B
Volatile Organics Compounds										
Volatile Organics Compounds										В
Methyl-Tert-Butyl Ether -		0.000		, mg. =						
Methyl-Tert-Butyl Ether -	Volatile Organics Compounds	-	·		Not Detected		Not Detected			
Semi-Volatile Organics Compounds				ua/L	1101 = 0100100				1.36	
Bis(2-ethylhexyl)phthalate 5 ug/L ND ND ND SB ug/L ND Not Analyzed Not Detected					_					
Bis(2-ethylhexyl)phthalate 5 ug/L ND ND ND SB ug/L ND Not Analyzed Not Detected	Semi-Volatile Organics Compou	inds					Not Analyzed			
Dir-Puty phthalate 50	Bis(2-ethylhexyl)phthalate			ug/L	14.2	VM			14.3	В
Not Detected Not Analyzed Not Detected					ND				9.09	
Pesticides		10	SBI		43.3	VM			6.06	
Polychlorinated Biphenyls										
Classical Chemistry Parameters	Pesticides				Not Detected		Not Analyzed		Not Detected	
Classical Chemistry Parameters	D. L. ald L. ald District Control				Not Detected		Not Applyaged		Not Detected	
Ammonia as N 2 mg/L 6.7 NA Biochemical Oxygen Demand - mg/L O ₂ 12 B-01 NA cBOD - mg/L O ₂ 9 NA D Chloride 250 mg/L 398 NA D Coliform, Fecal - MFN 11 NA NA Flashpoint - °F >200 >150 NA Nitrate as N 10 mg/L 0.086 0.3 NA Nitrate as N 10 mg/L 0.086 NA NA Non-Polar Material by EPA 1664 - mg/l ND 3.64 J J Total Nitrogen - mg/L 8.06 NA	Polychlorinated Biphenyls				Not Detected		Not Analyzed		Not Detected	
Biochemical Oxygen Demand -	Classical Chemistry Parameters								Not Analyzed	
cBOD - mg/L O ₂ 9 NA Chloride 250 mg/L 398 NA Coliform, Fecal - MPN 11 NA Flashpoint - °F >200 >150 Nitrate/Nitrite as N 10 mg/L 0.086 0.3 Nitrate as N 10 mg/L 0.086 NA Non-Polar Material by EPA 1664 - mg/L 0.086 NA Non-Polar Material by EPA 1664 - mg/L 8.06 NA Oil & Grease, Hem-Grav - mg/L 8.06 NA Oil & Grease, Hem-Grav - mg/L 1.27 NA Organic Nitrogen - mg/L 1.27 NA pH - SU 6.71 i-02 6.6 Total Settleable Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Siglath Nitrogen as N - mg/L 7.97	Ammonia as N	2		mg/L	6.7	1	NA			
cBOD - mg/L O ₂ 9 NA NA Chloride 250 mg/L 398 NA NA Coliform, Fecal - MPN 11 NA Flashpoint NA NA Flashpoint - °F >200 >150 NA NA NA NA NA NA NA NB 0.3 NB NB 0.3 NB NA	Biochemical Oxygen Demand	•		mg/L O ₂	12	B-01	NA			
Chloride	7.7.			mg/L O ₂	9		NA			
Coliform, Fecal -										
Flashpoint -		-								
Nitrate/Nitrite as N 10 mg/L 0.086 0.3 Nitrate as N 10 mg/L 0.086 NA Non-Polar Material by EPA 1664 - mg/l ND 3.64 J Total Nitrogen - mg/L 8.06 NA NA Oil & Grease, Hem-Grav - mg/l NA 7.7 NA Organic Nitrogen - mg/L 1.27 NA NA NA pH - SU 6.71 I-02 6.6 Hold NA Interpretable Solids - mg/L 0.2 1.5 Interpretable Solids - mg/L 1290 NA Interpretable Solids NA Interpretable Solids - mg/L 424 160 Interpretable Solids - mg/L 7.97 NA Interpretable Solids - Interpretable Solids <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Nitrate as N 10 mg/L 0.086 NA Non-Polar Material by EPA 1664 - mg/I ND 3.64 J Total Nitrogen - mg/L 8.06 NA Oil & Grease, Hem-Grav - mg/I NA 7.7 Organic Nitrogen - mg/L 1.27 NA pH - SU 6.71 I-02 6.6 Total Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - °F 75.2 - Field Measurements - 16.7 -										
Non-Polar Material by EPA 1664 - mg/l ND 3.64 J Total Nitrogen - mg/l NA NA Oil & Grease, Hem-Grav - mg/l NA 7.7 Organic Nitrogen - mg/l 1.27 NA pH - SU 6.71 I-02 6.6 Total Settleable Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - °F 75.2 Field Measurements Field Temp °C 16.7 Total Suspended Solids - mg/L Total Suspended Solids - Total Suspended										
Total Nitrogen - mg/L 8.06 NA Oil & Grease, Hem-Grav - mg/l NA 7.7 Organic Nitrogen - mg/L 1.27 NA pH - SU 6.71 i-02 6.6 Total Settleable Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - "F 75.2								.1		
Oil & Grease, Hem-Grav - mg/l NA 7.7 Organic Nitrogen - mg/L 1.27 NA pH - SU 6.71 I-02 6.6 Total Settleable Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - °F 75.2 - Field Measurements - 16.7 -		W-						- 0		
Organic Nitrogen - mg/L 1.27 NA pH - SU 6.71 I-02 6.6 Total Settleable Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - °F 75.2 - Field Measurements - 16.7 -										
pH - SU 6.71 I-02 6.6 Total Settleable Solids - mL/L 0.2 1.5 Total Solids - mg/L 1290 NA Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - °F 75.2 - Field Measurements - - 16.7 -										
Total Settleable Solids						1-02				
Total Solids						1-02				
Total Suspended Solids - mg/L 424 160 Total Kjeldahl Nitrogen as N - mg/L 7,97 NA Temperature - °F 75,2 Field Measurements - 16.7										
Total Kjeldahl Nitrogen as N - mg/L 7.97 NA Temperature - °F 75.2 - Field Measurements - °C 16.7										
Field Measurements °C 16.7										
Field Measurements Field Temp °C 16.7				mg/L ∘⊏	1,97					
Field Temp °C 16.7	remperature	-					10,2			
Field Temp °C 16.7	Field Measurements									
				°C			16.7			
	Field pH			SU			6.32			

NOTES

Only detected compounds are listed

NY TOGS - New York State Department of Environmental Conservation Technical & Operational Guidance Series

AWQS - Ambient Water Quality Standards

ND - Not detected

NA - Not analyzed

"-" No criteria

mg/L - Milligrams per liter

ug/L - Micrograms per liter

SU - Standard unit

deg F - Degrees Fahrenheit

to gr - Degrees Fanrenneil
B - The analyte was detected above the reporting limit in the associated method blank.

QM-08 Quality control samples indicate high bias, however the results are well below applicable limits and data was therefore accepted QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

B-01 The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2 mg/l dissolved oxygen depletion. Therefore the reported result is an estimated value only.

Exceeds NY TOGS AWQS

59-01 Central Ave. Farmingdale, NY 11735

Tel: (631) 414-7685 Fax: (631) 414-7688

February 07, 2011

Rick Hart

EPM, Inc.

1983 Marcus Avenue

Lake Sucess, NY 11042

RE: Willets Pt - 29061

Enclosed are the results of analyses for samples received by the laboratory on 01/25/11 10:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joseph P. Shaulys

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685

Fax: (631) 414-7688

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/07/11 14:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
126-07	1101206-01	Groundwater	01/25/11 09:30	01/25/11 10:55

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/07/11 14:58

126-07 1101206-01 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifier
	Ana	lytical Chem	ists Labora	atory, LLC.			
Total Metals							
Aluminum	7.90	0.040	mg/L	MEM	01/31/11 18:42	EPA 200.7	QM-07
Antimony	<0.040	0.040		MEM		*	
Arsenic	<0.040	0.040		MEM		*	QM-08
Barium	1.04	0.004	*	MEM		*	
Beryllium	<0.004	0.004	•	MEM		**	
Cadmium	<0.020	0.020	•	MEM		**	
Calcium	126	4.00	•	MEM	01/31/11 18:36	*	QM-07
Chromium	<0.020	0.020	•	MEM	01/31/11 18:42	•	
Cobalt	<0.008	0.008	•	MEM		•	
Copper	0.012	0.004	*	MEM			В
Iron	40.4	4.00	*	MEM	01/31/11 18:36	*	QM-07
_ead	< 0.040	0.040	#	MEM	01/31/11 18:42	*	
Magnesium	46.9	4.00	•	MEM	01/31/11 18:36	*	QM-07
- Manganese	0.860	0.004	ii.	MEM	01/31/11 18:42	*	
Mercury	<0.30	0.30	ug/L	MEM	01/27/11 15:51	EPA 245.1	
Nickel	0.023	0.020	mg/L	MEM	01/31/11 18:42	EPA 200.7	
Potassium	51.8	4.00	ni.	MEM	01/31/11 18:36		QM-07, E
Selenium	<0.020	0.020	•	MEM	01/31/11 18:42		
Silver	<0.020	0.020		MEM			
Sodium	311	10.0	iii	MEM	01/31/11 18:36	a	QM-07
Thallium	<0.040	0.040		MEM	01/31/11 18:42	*	
Vanadium	0.019	0.004	<u>iii</u>	MEM		**	
Zinc	0.099	0.020	**	MEM	100	•	
N Total							
Cyanide, Total	<0.020	0.020	mg/L	JD	01/28/11 15:58	LT 10-204-00-1-X	

Analytical Chemists Laboratory, LLC.

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685

Fax: (631) 414-7688

EPM, Inc. Project: Willets Pt - 29061

1983 Marcus Avenue Project Number: [none] Reported: Lake Sucess NY, 11042 Project Manager: Rick Hart 02/07/11 14:58

126-07 1101206-01 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifie
	Ana	lytical Chemi	sts Labora	atory, LLC.			
lon-Polar Materials							
Non-Polar Material	<4.0	4.0	mg/L	HT	02/03/11 07:46	EPA 1664A	
OA MS							
Benzene	<1.00	1.00	ug/L	VNS	01/25/11 16:55	EPA 624	
Bromodichloromethane	<5.00	5.00	**	VNS	(40)	600	
Bromoform	<1.00	1.00	940	VNS	(447)	**	
3romomethane	<2.00	2.00	1599	VNS	1140	46	
Carbon Tetrachloride	<2.00	2.00	((**)	VNS	19 4 0	#0	
Chlorobenzene	<1.00	1.00	(100)	VNS	(/w/.)	₩.	
Chloroethane	<2.00	2.00	(14)	VNS	100		
2-Chloroethyl Vinyl Ether	<5.00	5.00	((4))	VNS			
Chloroform	<1.00	1.00		VNS			
Chloromethane	<2.00	2.00	(040)	VNS	(44)	· ·	
Dibromochloromethane	<5.00	5.00	S#0	VNS			
,2-Dichlorobenzene	<1.00	1.00		VNS	(0)	in.	
,3-Dichlorobenzene	<2.00	2.00	u	VNS	₩	(44)	
,4-Dichlorobenzene	<1.00	1.00		VNS	(*)	(100)	
,1-Dichloroethane	<2.00	2.00		VNS		(10)	
,2-Dichloroethane	<1.00	1.00	(**)	VNS		(19)	
1,1-Dichloroethene	<1.00	1.00	(**)	VNS	(*)		
rans-1,2-Dichloroethene	<1.00	1.00		VNS	w	w	
,2-Dichloropropane	<2.00	2.00	**	VNS			
rans-1,3-Dichloropropene	<1.00	1.00		VNS		175	
cis-1,3-Dichloropropene	<1.00	1.00	•	VNS	.0.	1195	
Ethylbenzene	<2.00	2.00		VNS	.00	1990	
Methylene Chloride	<10.0	10.0		VNS	(98)	10960	
1,1,2,2-Tetrachloroethane	<2.00	2.00		VNS	3997	((**)	
Fetrachloroethene	<1.00	1.00		VNS	(199)	0.40	
oluene	<1.00	1.00		VNS	(1 49))	3(4)	
,1,1-Trichloroethane	<1.00	1.00		VNS	3997	200	
,1,2-Trichloroethane	<2.00	2.00	THE STATE OF THE S	VNS	((♦))	((w)	
richloroethene	<1.00	1.00		VNS	3 00 00	((w)	
richlorofluoromethane	<1.00	1.00		VNS		((**)	
/inyl chloride	<5.00	5.00	2.00	VNS	900	(96)	
n,p-Xylene	<2.00	2.00		VNS	(4)	000	

Analytical Chemists Laboratory, LLC.

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685

Fax: (631) 414-7688

EPM, Inc. Project: Willets Pt - 29061

1983 Marcus AvenueProject Number: [none]Reported:Lake Sucess NY, 11042Project Manager: Rick Hart02/07/11 14:58

126-07 1101206-01 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifier
•		lytical Chemi	ete l abor	etony II C	•		
VOA MS	Alla	iyacai Onemi	313 Labor	atory, LLO.			
Acenaphthene	<3.00	3.00	ug/L	VM	02/04/11 12:19	EPA 625	
Acenaphthylene	<3.00	3.00	ug/L	VM	*		
Anthracene	<3.00	3.00		VM			
Benzidine	<10.0	10.0	<u> </u>	VM			
Benzo (a) anthracene	<3.00	3.00		VM	. m.	•	
Benzo (b) fluoranthene	<3.00	3.00	W.	VM		**:	
Benzo (k) fluoranthene	<3.00	3.00		VM	.00	**:	
Benzo (g,h,i) perylene	<3.00	3.00		VM	> 10 ()	•	
Benzo (a) pyrene	<3.00	3.00		VM	11900	w:	
Bis(2-chloroethoxy)methane	<4.00	4.00	9.	VM	51000	**:	
Bis(2-chloroethyl)ether	<4.00	4.00	1.992	VM	(#0)	•10	
Bis(2-chloroisopropyl)ether	<4.00	4.00	1.00	VM	(80)	* E	
3is(2-ethylhexyl)phthalate	14.2	5.00	100	VM	((**))	*:	
l-Bromophenyl phenyl ether	<3.00	3.00	100	VM	((00))	*:	
Butyl benzyl phthalate	<4.00	4.00	190	VM	((40)	*	
I-Chloro-3-methylphenol	<3.00	3.00	199	VM	((44))	6 1.	
2-Chloronaphthalene	<3.00	3.00	. 0	VM	((44))	46.	
2-Chlorophenol	<4.00	4.00	÷ 0:	VM	((44))	40.	
I-Chlorophenyl phenyl ether	<3.00	3.00	0.00	VM	(#0)	60	
Chrysene	<3.00	3.00	0.00	VM	983	**	
Dibenz (a,h) anthracene	<3.00	3.00		VM	(W)	₩.	
Di-n-butyl phthalate	<3.00	3.00	1000	VM	TWI	*	
3,3'-Dichlorobenzidine	<3.00	3.00	146	VM	160	W	
2,4-Dichlorophenol	<3.00	3.00	146	VM	100		
	<3.00 <3.00	3.00		VM			
Diethyl phthalate 2,4-Dimethylphenol	<3.00 <10.0	10.0	100	VM			
2,4-Dimethylphenol Dimethyl phthalate	<3.00	3.00	700	VM	M.	-	
• •	<5.00	5.00	- 11	VM	W.	144	
4,6-Dinitro-2-methylphenol	<6.00	6.00	100	VM	(#)		
2,4-Dinitrophenol 2,4-Dinitrotoluene	<8.00 <3.00	3.00	1100	VM			
	<3.00 <3.00	3.00		VM		100	
2,6-Dinitrotoluene		4.00	48	VM	•	100	
Di-n-octyl phthalate	<4.00			VM	**		
Fluoranthene	<3.00	3.00		VM	(107)		
Fluorene	<3.00 <5.00	3.00	40	VM	197	•	
lexachlorobenzene	<5.00	5.00	100	VM			
lexachlorobutadiene	<3.00	3.00		VIVI	1000	10%	

Analytical Chemists Laboratory, LLC.

EPM, Inc. Project: Willets Pt - 29061

1983 Marcus AvenueProject Number: [none]Reported:Lake Sucess NY, 11042Project Manager: Rick Hart02/07/11 14:58

126-07 1101206-01 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifie
	Ana	lytical Chemi	ists Labor	atory, LLC.			
SVOA MS							
Hexachlorocyclopentadiene	<3.00	3.00	ug/L	VM	02/04/11 12:19	EPA 625	
Hexachloroethane	<4.00	4.00	**	VM			
Indeno (1,2,3-cd) pyrene	<3.00	3.00	•	VM		*	
Isophorone	<3.00	3.00	•	VM		**	
Naphthalene	43.3	4.00		VM		•	
Nitrobenzene	<5.00	5.00	**	VM		*	
2-Nitrophenol	<5.00	5.00	•	VM		*	
4-Nitrophenol	<3.00	3.00		VM	n	•	
N-Nitrosodimethylamine	<4.00	4.00		VM		*	
N-Nitrosodiphenylamine	<5.00	5.00		VM		•	
N-Nitrosodi-n-propylamine	<5.00	5.00		VM	(*)	#(
Pentachlorophenol	<3.00	3.00		VM		**	
Phenanthrene	<3.00	3.00		VM	44	**	
Phenol	<3.00	3.00	11	VM	**	770	
Pyrene	<3.00	3.00	•	VM		**	
1,2,4-Trichlorobenzene	<3.00	3.00		VM		**	
2,4,6-Trichlorophenol	<3.00	3.00		VM		**:	
Pesticides							
alpha-BHC	<0.100	0.100	ug/L	MEM	02/04/11 15:05	EPA 608	
beta-BHC	<0.100	0.100	**	MEM			
Aldrin	<0.100	0.100	**	MEM	₩.		
gamma-BHC (Lindane)	<0.100	0.100	40	MEM		, K	
Heptachlor	<0.100	0.100		MEM			
Heptachlor epoxide	<0.100	0.100	•	MEM			
delta-BHC	<0.100	0.100	u	MEM		7.80	
Endosulfan I	<0.500	0.500		MEM	I M.C.	0.90	
Endosulfan II	<0.500	0.500		MEM	AM3.	UMA	
Endosulfan sulfate	<0.500	0.500		MEM	VM1:	539.5	
Endrin	<0.500	0.500		MEM	(.141).	540	
Endrin aldehyde	<0.500	0.500	79	MEM	(34)	(5.99)	
Endrin ketone	<0.500	0.500	79	MEM	3 9 45	(200)	
4,4′-DDD	<0.500	0.500	590	MEM		(200)	
4,4'-DDE	<0.500	0.500	595	MEM	(m)	((*)	
4,4'-DDT	<0.500	0.500	1390	MEM	9900	((46)	
Methoxychlor	<1.00	1.00	(40)	MEM	0.00	(0.00)	

Analytical Chemists Laboratory, LLC.

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/07/11 14:58

126-07 1101206-01 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifier
	Ana	lytical Chem	nists Labora	tory, LLC.			
Pesticides							
Dieldrin	<0.500	0.500	ug/L	MEM	02/04/11 15:05	EPA 608	
Chlordane (technical)	<1.00	1.00	**	MEM			
Toxaphene	0.00			MEM	7.	**	
РСВ							
Arodor 1016	<4.00	4.00	ug/L	MEM	02/04/11 13:55	EPA 608	
Aroclor 1221	<4.00	4.00	•	MEM	M		
Aroclor 1232	<4.00	4.00	**	MEM	+	*	
Aroclor 1242	<4.00	4.00		MEM		*	
Aroclor 1248	<4.00	4.00		MEM		**	
Aroclor 1254	<4.00	4.00	100	MEM	W		
Arodor 1260	<4.00	4.00	•	MEM	(0)	*	
Classical Chemistry Parameters							
Ammonia as N	6.70	0.250	mg/L	JD	01/26/11 16:32	LT 10-107-06-1-B	
Biochemical Oxygen Demand	12	2	mg/L O2	VNS	01/31/11 14:00	SM 5210 B	B-01
cBOD	9	2	11	VNS	01/31/11 14:04		B-01
Chloride	398	10.0	mg/L	MEM	02/03/11 22:17	EPA 300.0	
Coliform, Fecal	11	2	MPN	SUB	01/25/11 12:45	M9221 BC	
Flashpoint	>200		°F	HT	02/01/11 07:39	SW 1010	
Nitrite as N	<0.025	0.025	mg/L	JD	01/26/11 13:23	LT10-107-04-1-A	
Nitrate/Nitrite as N	0.086	0.035	((86)	JD	01/25/11 14:41	LT 10-107-04-1-A	
Nitrate as N	0.086	0.035)))))	JD	01/26/11 13:23	SM 4500-N	
Total Nitrogen	8.06	1.20	(00)	JD	02/01/11 12:36	50.000	
Organic Nitrogen	1.27	1.20	((11))	JD	O X C	3000	
pH	6.71		pH Units	MEM	01/25/11 10:55	SM 4500-H B	I-02
Total Settleable Solids	0.200	0.100	mL/L	MEM	01/26/11 11:30	SM 2540 F	
Total Solids	1290	25.0	mg/L	JD	02/01/11 17:18	SM 2540 B	
Total Suspended Solids	424	10.0	u	JD	01/28/11 16:38	SM 2540 D	
Total Kjeldahl Nitrogen (as N)	7.97	1.20		JD	02/01/11 12:36	LT 10-107-06-2-E	

Fecal Coliform analyzed by NYSDOH Lab ID #10478.

Analytical Chemists Laboratory, LLC.

Sample results reported on a dry weight basis.

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685 Fax: (631) 414-7688

EPM, Inc. Project: Willets Pt - 29061

1983 Marcus Avenue Project Number: [none]
Lake Sucess NY, 11042 Project Manager: Rick Hart

Reported: 02/07/11 14:58

Notes and Definitions

Z-01	>200
QM-08	Quality control samples indicate high bias, however the results are well below applicable limits and data was therefore accepted.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
I-02	This sample was received outside of the EPA recommended holding time.
B-01	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2 mg/l dissolved oxygen depletion. Therefore the reported result is an estimated value only.
В	Analyte is found in the associated blank as well as in the sample.
SM	Standard Methods for the Examination of Water and Wastewater, 18th edition.
EPA	40 Code of Federal Regulations, Part 136, October 26, 1984.
sw	SW 846 3rd Edition.
LT	Lachat Method Manual, "Methods List for Automated Ion Analyzers" ,February 2004.

dry

Client Name:

59-01 Central A

CHAIN OF CUSTODY RECORD FOM Inc. Report To: Rich Hart Rharts

Heinquished by: /	5-Cherepany	epany X	* 6 hour holding time (maximum)	Special Instructions:			+B-9E1	S-Soff, SL-Sludge, SD-Soffd, O-Oil, F-Paint Chips, WP-Wipe Preservative Code Nautro And S-Suitung And Addustria And Sample ID / Description	chemlabs.com * www.achem 10950 NJDEP #NY006 USEF	Tel: (631) 414-7685 • Fax: (631) 414-7688	59-01 Central Ave. * Farmindale, NY 11735	
Date	Date 1/3K/r	Date 1/25/11	(MOTOR)					-				
Time	Time	Time 9:30) for				11/se/11	Date Sampled		Telepho	City/S	Þ
Received by:	Received by:	Received by:	Fea				9:30	Time Sampled		Telephone No.: 516 328-1194	City/State/Zip:	Address:
o W	y;	γ	Feal Gliferm X				GW	Matrix Cede		516-328	lake	1983
			200				ı	Grab		311-1	Sugs	(i)
			3					Composite		7	2	Na
			*					Plastic Bottles Glass Jar	# 0	Fax	NY	512
-1			•		+++			VOA Vial	\$76 - 338-1381 # of containers		11	F
Date 1/75///	Date	Date					1	Plastic Bag	taine	8 H	0 1	è
	TO .	w					1	Other (specify):	3	Re	Pro	P.C
Time	Time	Time					X	7 Vox s 674		Results Needed:	 //ບຯ⊋ Project ID:	Marcus Ave P.O. Number:
J (0)	10	· ·					X	5 VOCS 625		eede		ber:
			990				X	PCBS 608			2	
		Samp	Temperature Upo				X	Total Petals Total Petalson Hidrocologis (1664)		8	Willets	29061
		Sample Containers Intact? Samples Properly Preserved? VOCs Free of Headspace?	Temperature Upon Receipt: Samples Received On Ice?					Total Petroleum	Ana	tenden	t	190
		ntaine operly of He	e Upo		-1			Flushpoint, Total Sinds	Analyze For	2	σ_c	
	. · ·	rs Inta	D Re		++	++-		Total suspended souds	Or. Ausi	7	Pont	
		erved	s bipt:				X	Flushpoot, Total Scieds Total Supposed Scieds Total Osserved Scieds Total Osserved Scieds Cobsidered Bostom On	RUSHTIAN OF	7		
		ন্ত					X	Notal Vitragen, Nitrite	notiocen	1		
	(3/10	41				X	Total Notragen, Notrate Antrates Two Kieldahl Chloride Fecal Coi form Bact	ecus.			
		Z Z Z Z	XX					TECGI COLITOR DACT	u q			
			9							- 1		

59-01 Central Ave. Farmingdale, NY 11735

Tel:

(631) 414-7685

Fax:

x: (631) 414-7688

February 08, 2011

Rick Hart

EPM, Inc.

1983 Marcus Avenue

Lake Sucess, NY 11042

RE: Willets Pt - 29061

Enclosed are the results of analyses for samples received by the laboratory on 01/07/11 14:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joseph P. Shaulys

Analytical Chemists Laboratory, LLC
NY Lab ID #10950 NJ Lab ID #NY006 PA Lab ID #PA-68-04671 EPA Lab ID #NY01292

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/03/11 14:07

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-6 (0-2)	1101049-02	Soil	01/06/11 09:55	01/07/11 14:10
B-6 (5-10)	1101049-03	Soil	01/06/11 10:15	01/07/11 14:10
B-6 (10-15)	1101049-04	Soil	01/06/11 10:20	01/07/11 14:10
GW-6	1101049-05	Groundwater	01/06/11 11:35	01/07/11 14:10
B-17 (0-2)	1101049-06	Soil	01/06/11 13:15	01/07/11 14:10
B-17 (5-10)	1101049-07	Soil	01/06/11 13:30	01/07/11 14:10
B-17 (10-15)	1101049-08	Soil	01/06/11 13:40	01/07/11 14:10
B-3 (0-2)	1101049-09	Soil	01/07/11 09:00	01/07/11 14:10
B-3 (5-10)	1101049-10	Soil	01/07/11 09:20	01/07/11 14:10
B-4 (0-2)	1101049-11	Soil	01/07/11 10:35	01/07/11 14:10
B-4 (5-10)	1101049-12	Soil	01/07/11 11:15	01/07/11 14:10
B-4 (15-20)	1101049-13	Soil	01/07/11 11:40	01/07/11 14:10
GW-4	1101049-14	Groundwater	01/07/11 13:15	01/07/11 14:10
Trip Blank-1	1101049-15	Water	01/06/11 08:00	01/07/11 14:10

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/03/11 14:07

GW-4 1101049-14 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifier
rulalyte					Allalyzed	Welliod	404
	Ana	lytical Chemi	sts Labora	atory, LLC.			
otal Metals							
Aluminum	1.18	0.040	mg/L	MEM	01/10/11 16:52	SW 6010B	
Antimony	<0.040	0.040	(1992)	MEM	(₩.)	0.00	
Arsenic	<0.040	0.040	(00)	MEM	0.00	0.00	
Barlum	1.20	0.004	7.000	MEM	5.402	(0.00)	
Beryllium	<0.004	0.004	5002	MEM	(•■)	(IMC	
Cadmium	<0.020	0.020	3(40)	MEM	(**)	0.000	
Calcium	165	0.400	3000	MEM	01/11/11 13:51	(100)	
Chromium	<0.020	0.020	(i)#2	MEM	01/10/11 16:52	((0))	
Cobalt	<0.008	0.008	.00	MEM	(M .)	(100)	
Copper	0.005	0.004		MEM	(40)	(100)	В
ron	32.0	0.400	((#)	MEM	01/11/11 13:51	(100	
_ead	<0.040	0.040	1090	MEM	01/10/11 16:52	{ ₹# 7	
Magnesium	70.8	0.400	((49)	MEM	01/11/11 13:51	EPA 6010B	
Manganese	0.273	0.004	(#)	MEM	01/10/11 16:52	SW 6010B	
Mercury	< 0.30	0.30	ug/L	MEM	01/10/11 14:03	SW 7470A	
Nickel	<0.010	0.010	mg/L	MEM	01/10/11 16:52	SW 6010B	
otassium	18.5	0.040	H	MEM	(10)	{(* /	QB-01, E
Selenium	<0.020	0.020		MEM	(0.5)	1090	
Silver	<0.020	0.020	590	MEM	•	((*)	
Sodium	10.7	0.100	1980	MEM	3.10%	(* *)	
Thallium	<0.040	0.040		MEM	S#3	1982	
/anadium	0.006	0.004		MEM	5 m 5	((*)	
Zinc	0.033	0.020	100	MEM	7(m);	13 9 0	В
issolved Metals							
Aluminum	<0.040	0.040	mg/L	MEM	01/10/11 16:46	SW 6010B	
Antimony	<0.040	0.040		MEM	•	•	
Arsenic	<0.040	0.040		MEM	(**)		
Barium	1.13	0.004	•	MEM			
Beryllium	<0.004	0.004		MEM	•	•	
Cadmium	<0.020	0.020		MEM	()		
Calcium	160	0.400	(0)	MEM	01/11/11 13:45	(m)	
Chromium	<0.020	0.020		MEM	01/10/11 16:46	•	
Cobalt	<0.008	800.0	44	MEM	\ .		
Copper	0.004	0.004	(4)	MEM	(**))		В
ron	24.8	0.400		MEM	01/11/11 13:45	(*)	
_ead	<0.040	0.040	*	MEM	01/10/11 16:46		

Analytical Chemists Laboratory, LLC.

All results are based on the sample As Received'by the laboratory and no endorsement of the sample integrity prior to sample receipt is implied or given unless collected by Analytical Chemists Laboratory employees. Report must be reproduced in its enti

Page 75 of 86

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported:

02/03/11 14:07

GW-4 1101049-14 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifler
-		lytical Chemi	lsts Labora	atory, LLC.			
Dissolved Metals							
Magnesium	68.3	0.400	mg/L	MEM	01/11/11 13:45	SW 6010B	
Manganese	0.227	0.004	и.	MEM	01/10/11 16:46	(! #13	
Mercury	<0.30	0.30	ug/L	MEM	01/10/11 14:01	SW 7470A	
Nickel	<0.010	0.010	mg/L	MEM	01/10/11 16:46	SW 6010B	
Potassium	18.5	0.040	U.	MEM	18	17 .0 15	QB-01, E
Selenium	<0.020	0.020	*	MEM	01/10/11 16:52		
Silver	<0.020	0.020		MEM	01/10/11 16:46	15.	
Sodium	8.47	0.100		MEM	18	1.	
Thallium	<0.040	0.040		MEM		(10)	
Vanadium	<0.004	0.004		MEM		•	
Zinc	0.033	0.020		MEM	*	V 9 72	В
OA MS							
Benzene	<1.00	1.00	ug/L	VNS	01/14/11 10:42	SW 8260B	
3romobenzene	<2.00	2.00	**	VNS	*	•	
Bromochloromethane	<1.00	1.00	(**)	VNS		•	
Bromodichloromethane	<5.00	5.00		VNS	₹.	•	
3romoform	<1.00	1.00	*	VNS			
Bromomethane	<2.00	2.00		VNS			
sec-Butylbenzene	<1.00	1.00	•	VNS			
n-Butylbenzene	<1.00	1.00	7	VNS	.*		
tert-Butylbenzene	<1.00	1.00		VNS	8 9 75	3.87	
Carbon Tetrachloride	<2.00	2.00		VNS		2.9%	
Chlorobenzene	<1.00	1.00		VNS	(₩1)	2.967	
Chloroethane	<2.00	2.00	1000	VNS	200	1.4.1	
Chloroform	<1.00	1.00	(190.)	VNS	•	₹.	
Chloromethane	<2.00	2.00	100	VNS	(#1)	·**)(•)	
2-Chlorotoluene	<2.00	2.00	1980	VNS	(4))		
4-Chlorotoluene	<2.00	2.00		VNS	(0.0)	()	
1,2-Dibromo-3-chloropropane	<2.00	2.00	30	VNS	(0)	0₩0	
Dibromochloromethane	<5.00	5.00	200	VNS	(4.1)	:(₩)	*
1.2-Dibromoethane	<2.00	2.00	000	VNS	540	1000	
Dibromomethane	<1.00	1.00	0.00	VNS	260	200	
1,2-Dichlorobenzene	<1.00	1,00	200	VNS	5 6 01	(00)	
1,3-Dichlorobenzene	<2.00	2.00	3.00	VNS	9#93		
1,4-Dichlorobenzene	<1.00	1.00		VNS	360		

Analytical Chemists Laboratory, LLC.

All results are based on the sample As Received'by the laboratory and no endorsement of the sample integrity prior to sample receipt is implied or given unless collected by Analytical Chemists Laboratory employees. Report must be reproduced in its enti

Page 76 of 86

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685

Fax: (631) 414-7688

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/03/11 14:07

GW-4 1101049-14 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifier
•	Anal	ytical Chemi	sts Labora	atory, LLC.			
OA MS	73701	y 1.001 01101111	0.0 -000.	,,			
Dichlorodifluoromethane	<1.00	1.00	ug/L	VNS	01/14/11 10:42	SW 8260B	
1.1-Dichloroethane	<2.00	2.00	*	VNS	(39)	*	
1,2-Dichloroethane	<1.00	1.00		VNS	((=)	**	
1,1-Dichloroethene	<1.00	1.00	W.	VNS	((♥)	**	
cis-1,2-Dichloroethene	<1.00	1.00	**	VNS	((+)	**	
trans-1,2-Dichloroethene	<1.00	1.00		VNS	((4)	*	
1,3-Dichloropropane	<1.00	1,00	**	VNS	((0))	*	
2,2-Dichloropropane	<2.00	2.00	w	VNS	(t e)	•	
1,2-Dichloropropane	<2.00	2.00	w	VNS	((♠)	**	
trans-1,3-Dichloropropene	<1.00	1.00		VNS	(100)		
I,1-Dichloropropene	<2.00	2.00	*	VNS	((*)		
cis-1,3-Dichloropropene	<1.00	1.00	MC.	VNS	(141)	1+ ••	
Ethylbenzene	<2.00	2.00	W.	VNS	((.)	*	
Hexachlorobutadiene	<1.00	1.00		VNS	(1#I)	#:	
sopropylbenzene	<2.00	2.00	*	VNS	1140	*	
I-Isopropyltoluene	<1.00	1.00	*	VNS	•	*	
Methyl-tert-Butyl Ether	1.36	1.00	11.	VNS		*	
Methylene Chloride	<10.0	10.0	**	VNS	11 4 1.	#	
n-Propylbenzene	<2.00	2.00	**	VNS		**	
Styrene	<1.00	1.00	**	VNS		*	
1,1,2,2-Tetrachloroethane	<2.00	2.00		VNS		#	
1,1,1,2-Tetrachloroethane	<1.00	1.00		VNS	100	#	
Tetrachloroethene	<1.00	1.00	**	VNS	(iii)	#	
Foluene	<1.00	1.00	*	VNS			
1,2,4-Trichlorobenzene	<1.00	1.00	W	VNS			
1,2,3-Trichlorobenzene	<2.00	2.00	*	VNS	(*)	#	
1,1,1-Trichloroethane	<1.00	1.00	*	VNS	(10)		
1,1,2-Trichloroethane	<2.00	2.00	*	VNS	(10)		
Frichloroethene	<1.00	1.00	*	VNS		*	
richlorofluoromethane	<1.00	1.00	*	VNS	(*)	#	
,2,3-Trichloropropane	<5.00	5.00	*	VNS		*	
,2,4-Trimethylbenzene	<1.00	1.00	*	VNS	0.0	m	100
1,3,5-Trimethylbenzene	<1.00	1.00	*	· VNS	0.00	#	
/inyl chloride	<5.00	5.00	9	VNS	1.0	*	
n,p-Xylene	<2.00	2.00	7	VNS	n.₩.		
o-Xylene	<1.00	1.00	X	VNS	1090		

Analytical Chemists Laboratory, LLC.

All results are based on the sample As Received'by the laboratory and no endorsement of the sample integrity prior to sample receipt is implied or given unless collected by Analytical Chemists Laboratory employees. Report must be reproduced in its enti

bseph P. Shaulys

EPM, Inc.

1983 Marcus Avenue Lake Sucess NY, 11042 Project: Willets Pt - 29061

Project Number: [none]
Project Manager: Rick Hart

Reported:

02/03/11 14:07

GW-4 1101049-14 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifier
	Ana	lytical Chemi	sts Labora	atory, LLC.			
SVOA MS							
Acenaphthene	<3.00	3.00	ug/L	vm	01/25/11 02:48	SW 8270C	
Acenaphthylene	<3.00	3.00	(*)	vm		((₩)	
Anthracene	<3.00	3.00	3.00	vm	(**)	((#))	
Benzo (a) anthracene	<3.00	3.00	(#)	vm	(*)	((₩)	
Benzo (a) pyrene	<3.00	3.00		vm	(4.1)	(141)	
Benzo (b) fluoranthene	<3.00	3.00	5005	vm	(100)	2040:	
Benzo (g,h,i) perylene	<3.00	3.00	710	vm	300	((4):	
Benzo (k) fluoranthene	<3.00	3.00		vm	300	1140	
4-Bromophenyl phenyl ether	<3.00	3.00	0.0	vm	3#0	261	
Butyl benzyl phthalate	<4.00	4.00	0.00	vm	340	- W	
4-Chloro-3-methylphenol	<3.00	3.00		vm			
4-Chloroaniline	<3.00	3.00	300	vm	(m)		
Bis(2-chloroethoxy)methane	<4.00	4.00	.00	vm			
Bis(2-chloroethyl)ether	<4.00	4.00		vm	(4)	(*)	
Bis(2-chloroisopropyl)ether	<4.00	4.00		vm	(#)	(1)	
2-Chloronaphthalene	<3.00	3.00		vm	•		
2-Chlorophenol	<4.00	4.00		vm	(*)		
4-Chlorophenyl phenyl ether	<3.00	3.00		vm	(*)		
Chrysene	<3.00	3.00		vm			
Dibenz (a,h) anthracene	<3.00	3.00	**	vm			
Dibenzofuran	<3.00	3.00		vm	(#)		
Di-n-butyl phthalate	9.09	3.00	•	vm			
1,4-Dichlorobenzene	<3.00	3.00		vm	100		
1,2-Dichlorobenzene	<3.00	3.00		vm			
1,3-Dichlorobenzene	<3.00	3.00		vm	•		
2,4-Dichlorophenol	<3.00	3.00	•	vm	₩)		
Diethyl phthalate	<3.00	3.00		vm			
2,4-Dimethylphenol	<10.0	10.0		vm			
Dimethyl phthalate	<3.00	3.00		vm		5.0	
4,6-Dinitro-2-methylphenol	<5.00	5.00	•	vm	19 9 0)	3997	
3,3'-Dichlorobenzidine	<3.00	3.00		vm	5 = 01	(940)	
2,4-Dinitrophenol	<6.00	6.00		vm	(₩)(
2,4-Dinitrotoluene	<3.00	3.00		vm	3.01	1,40	
2,6-Dinitrotoluene	<3.00	3.00		vm	(*)	(*0)	
Di-n-octyl phthalate	<4.00	4.00		vm	200)	9=6	
Bis(2-ethylhexyl)phthalate	14.3	5.00	300	vm	3€0	(100)	В

Analytical Chemists Laboratory, LLC.

All results are based on the sample As Received'by the laboratory and no endorsement of the sample integrity prior to sample receipt is implied or given unless collected by Analytical Chemists Laboratory employees. Report must be reproduced in its enti

Page 78 of 86

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685

Fax: (631) 414-7688

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 02/03/11 14:07

GW-4 1101049-14 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifle
	Ana	lytical Chemi	sts Labora	atory, LLC.			
SVOA MS							
Fluoranthene	<3.00	3.00	ug/L	vm	01/25/11 02:48	SW 8270C	
Fluorene	<3.00	3.00		vm	100	*:	
Hexachlorobenzene	<5.00	5.00	₩.	vm	3. 9 .0	***	
Hexachlorobutadlene	<3.00	3.00	(6)	vm	(0)	9 5	
Hexachlorocyclopentadiene	<3.00	3.00	**	vm	((*)	***	
Hexachloroethane	<4.00	4.00		vm	((4 0)	**	
Indeno (1,2,3-cd) pyrene	<3.00	3.00	10	vm	((m);	*0	
Isophorone	<3.00	3.00	100	vm	((+);	*	
2-Methylnaphthalene	<3.00	3.00	**	vm	((#))	•€	
2-Methylphenol	<4.00	4.00	**	vm	(! ₩ :	160	
3 & 4-Methylphenol	<5.00	5.00	"	vm	((é):	W .	
Naphthalene	6.06	4.00	u.	vm	(/ #):	**	
2-Nitroaniline	<4.00	4.00		vm	((44))	*	
4-Nitroaniline	<3.00	3.00	**	vm	29 4 8	₩.	
3-Nitroaniline	<3.00	3.00	H.	Vm	.: :	**	
Nitrobenzene	<5.00	5.00		vm	35#6		
4-Nitrophenol	<3.00	3.00	*	vm		*	
2-Nitrophenol	<5.00	5.00	**	vm	2.40		
N-Nitrosodiphenylamine	<5.00	5.00	11.	vm	1.00	*	
N-Nitrosodi-n-propylamine	<5.00	5.00	u	vm	•	*	
Pentachlorophenol	<3.00	3.00		vm		*	
Phenanthrene	<3.00	3.00	*	vm	(#)	*	
Phenol	<3.00	3.00	•	^{ee} vm		•	
Pyrene	<3.00	3.00	*	vm		#	
1,2,4-Trichlorobenzene	<3.00	3.00	**	vm		#	
2,4,5-Trichlorophenol	<3.00	3.00	#	vm	(-)	Ħ	
2,4,6-Trichlorophenol	<3.00	3.00	*	vm		*	

Analytical Chemists Laboratory, LLC.

All results are based on the sample As Received'by the laboratory and no endorsement of the sample integrity prior to sample receipt is implied or given unless collected by Analytical Chemists Laboratory employees. Report must be reproduced in its enti

bseph P. Shaulys

EPM, Inc.

1983 Marcus Avenue Lake Sucess NY, 11042 Project: Willets Pt - 29061

Project Number: [none]
Project Manager: Rick Hart

Reported:

02/03/11 14:07

GW-4 1101049-14 (Water)

Analyte	Result	Reporting Limit	Units	Analyst	Analyzed	Method	Qualifler
	Ana	lytical Chemi	sts Labora	atory, LLC.			
Pesticides				•			
alpha-BHC	<0.10	0.10	ug/L	VM	01/17/11 14:57	SW 8081	
alpha-Chlordane	<0.10	0.10	0.007	VM	(00)	(100)	
beta-BHC	<0.10	0.10	((**))	VM	000	(100)	
Aldrin	<0.10	0.10	5000	VM	9001	(00)	
gamma-BHC (Lindane)	<0.10	0.10	((**))	VM	3000	10 640	
gamma-Chlordane	<0.10	0.10	((**))	VM	2601	13 64/2	
Heptachlor	<0.10	0.10	(000)	VM	% * 1		
Heptachlor epoxide	<0.10	0.10	300	VM	(w)	141	
delta-BHC	<0.10	0.10	(00)	VM		140	
Endosulfan I	<0.50	0.50	(100)	VM	*	140	
Endosulfan II	<0.50	0.50		VM	· ·		
Endosulfan sulfate	<0.50	0.50	500	VM		•	
Endrin	<0.50	0.50	(64)	VM		•	
Endrin aldehyde	<0.50	0.50		VM		(*)	
Endrin ketone	<0.50	0.50		VM			
1,4'-DDD	<0.50	0.50	•	VM		7 4 0	
4,4'-DDE	<0.50	0.50	•	VM) *		
4,4'-DDT	<0.50	0.50		VM		(1)	
Vlethoxychlor	<1.00	1.00	**	VM	₩		
Dieldrin	<0.50	0.50	**	VM	•		
Chlordane (technical)	<5.00	5.00		VM	7.●		
Toxaphene	<5.00	5.00	((*)	VM	79		
СВ							
Aroclor 1016	<4.00	4.00	ug/L	VM	01/17/11 19:26	SW 8082	
Aroclor 1221	<4.00	4.00	•	VM	7.0	*	
Aroclor 1232	<4.00	4.00		VM	¥		
Aroclor 1242	<4.00	4.00	•	VM	™		
Aroclor 1248	<4.00	4.00		VM	9	(*)	
Aroclor 1254	<4.00	4.00		VM	(6)	1	
Aroclor 1260	<4.00	4.00		VM	₩.		

Analytical Chemists Laboratory, LLC.

All results are based on the sample As Received'by the laboratory and no endorsement of the sample integrity prior to sample receipt is implied or given unless collected by Analytical Chemists Laboratory employees. Report must be reproduced in its enti

Page 80 of 86

. Shadiyy

EPM, Inc.

Project: Willets Pt - 29061

1983 Marcus Avenue Lake Sucess NY, 11042 Project Number: [none]
Project Manager: Rick Hart

Reported: 01/31/11 13:49

Notes and Definitions

S-AC Acid surrogate recovery outside of control limits. The data was accepted based on valid in	covery of remaining two acid surrogates.
---	--

QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

QM-11 The recovery of spiked analytes in the LCS associated with the sample was above the QC limits. Reported results may be high biased.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

QB-01 The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result,

which is negligible according to method criteria.

B Analyte is found in the associated blank as well as in the sample.

SM Standard Methods for the Examination of Water and Wastewater, 18th edition.

EPA 40 Code of Federal Regulations, Part 136, October 26, 1984.

SW SW 846 3rd Edition.

LT Lachat Method Manual, "Methods List for Automated Ion Analyzers", February 2004.

dry Sample results reported on a dry weight basis.

seph P. Shaulvs

Page 119 of 122

Page 120 of 122

ED 1101081

CHAIN OF CUSTODY RECORD

P3 L of 3

Client: EPM, Inc.	√l, Inc.		Report to: Richard Hart
Address: 198	3 Marcus Av	Address: 1983 Marcus Avenue, Ste 109	Tartonamence - with a con-
Lak	Lake Success, NY 11042		Results needed by:
Tel: (516) 328-1194	8-1194	Fax: (516) 328-1381	(Rush T/A only)

EPA: NY01292

NJDEP: NY006

NYSDOH: 10950

Laboratory Certification IDs:

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685 Fax: (631) 414-7688 info@achemlabs.com

www.achemiabs.com

_				µөц	JO/9r	НС	24	25	×	**	* * * * * * * * * * * * * * * * * * *	X			×	*		P.M.	P A	¥(
-	_	_		_	205	-						1								1
					°O	NH				× is	大艺							ij.	Ä.	E S
	,	/cid) oidh	oosy	+ HO	SeV												TIME	TIME	TIME
ing P.O. #):	W. 243 P.J. 3906.	attacked (Van GT Su! Wiert		Matrix Code: 1-water; 2-soil; 3-sludge; 4-oil; 5-wipe; 6-other	Analysis Requested		1000 530/5000 53 30/0.85 500/ / [61/893/ / 100]	150 150 150 150 150 00 CS	1208/28/28/28/28/28/29/28	141905/2014/	19-15-1 1508/ 1/508/ nets / goots	8360 B	* See ottowed Du. full + To-15	* Se ottoring Chain of centraly & Ports	836 / 502 / 308 / 1262 / Think	SHU 8270 808 80831 176 NUCHO	Pair + 24061	DATE:	DATE:	DATE
Notes (including P.O. #):		1 Se	+	Matrix Code: 1-4	Matrix Code	(see above)	(5	C	Cs	_			S. 1 VIA	S. 1 1.00	16	4	-i.		1	
			(ation	Grab/ Composite	90 P	684	S. Rik	١	١	ļ	1	J	Gab	(Sep	T NAME / TION:	BY: RE)	JBY: RE)	RECEIVED BY LAB.
omments:			\		Sample Information	Time	51.8	05,8	405	10.30	10 30	1	1.35-11	-£0.61	17:55	13-35	PROJECT NAME / DESCRIPTION:	RECEIVED BY: (SIGNATURE)	RECEIVED BY: (SIGNATURE)	RECEIVED BY
Number/C				100-	Sai	Date	11011	1/8/1	1/2/11	1/10/1	11011	8	1011.	1/10/1	1/0/1	1/2/11	. Just	2		
y / N Work Order Number/Comments:				000	Containers	Туре	50. 20. 20	602 GUSS	2020	2 Anilise 2+ KA	AAMER 3 LA	1 004	6-1-cf Simmi	6 the suggest	Gez Girss	6025145	/.M.200_121	- V		
	77.41	2		_		#	Co	C3	こり	(ii)	9	<u> </u>	-	1	CS	ф				
This Area for Lab Use Only	Samples received intact?	Samples properly preserved?	Samples ambient?	Rush turnaround requested?	Sample Identification/	Description/Location	(E00 0 8)	(m-5) £ 9	(02-51) C. ()	16W-3	1-8-1	Tre Bien K 7	6-95,	1-95 1	1-18-11(0-5)	(21-5) 13-81 (2-1C)	COLLECTED BY: S → COLLECTED BY:	RELINQUISHED BY: (SIGNATURE)	RELINQUISHED BY: (SIGNATURE)	RELINQUISHED BY:

Addres Tel: (5' Client:

: EPM, Inc.		Report to: Richard Hart
ss: 1983 Marcus Avenue, Ste 109		The region to can Strength & spector
Lake Success, NY 11042		Results needed by:
516) 328-1194	Fax: (516) 328-1381	(Rush T/A only) $5 \pi J$

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685 Fax: (631) 414-7688 info@achemlabs.com

www.achemlabs.com	s.con	/	Labo	ratory Ce	Laboratory Certification IDs:	n IDs:	NYSDOH: 10950 NJ	NJDEP: NY006	EPA: NY01292	NYO	1292	
This Area for Lab Use Only	/yjr	Y Work Order Number/Comments:	Number/Cc	mments:		Notes (including P.O. #):	ng P.O. #):					
Samples received intact?	1						05 to 02 30	100				
Samples properly preserved?	d?	7				₹ *	S 73 NOW / DANSON 10	Just 4	/cid			
Samples ambient?		2							A oidre			
Rush turnaround requested?	d?	9	100-	/1		Matrix Code: 1-	Matrix Code: 1-water; 2-soil; 3-sludge; 4-oil; 5-wipe; 6-other_	her	oos4			рег
Sample Identification/		Containers	San	Sample Information	tion	Matrix Code	Analysis Requested	ested	_	*05	ľ	1O\ər
Description/Location	#	Туре	Date	Time	Grab/ Composite	(see above)	•			_	ЭН	ION
1. Gliri	9	Filmber 3 VOA	1411	15.30	1	1	870 / 87 7x/80814	18082 Jun 100	*^	įχ	$\frac{1}{\sqrt{2}}$	X
(c-3) - J	C\$	2,02.520	1/11/1	8 30	Sin	(8	Sim (5:70 / 50 5)	131.184				1
(3-0)5 8 . 7	C:	462.50	1. 1.	38.6	640	Ci	12 52 1251025	5057 1 7 Man				1
(z-c) £ 8 . /	C1	502 5um	144	2.51	13.49	CI	- 808 2 (8) OKS	1.45 (F) (CROS)			_	1
(21 5) 2 (2 10)	01	8016 220	194	3 30	Good	()	2 1508 Oct 1 3K	5000 TAL 14 46				1
(53/62)	t e	662 526	della	801	600	5	1. 625/20ES/1965	8252/Tt/26				7
(7.5) 88, 6.m	(6)	200 574.55	1/1/1	8:0	6-0	4	3/2/505/2663/268	1000 / Cate				X
8-M91)	JA 16 3 137	1/0/1	4.05	١	/	3760 /8370 (48 4/8	500 100 / 5258	FX	不	4SX	7
1 16-11 (c2)	CY	002 5KUS	1/4 /2	10 10	(5 mg)	0	157.6 8 270,503 1 sol	5 Fay 71:1/10				7
10-11 (S-10)	Ci.	1,025:55	W. W.	10 31	Sab	CI	8) 1.3x 203 / 2018	2550/TAL 1446				7
(PRINT NAME)	Che	Wered Gara	1/4/1	PROJECT NAME DESCRIPTION:	_	W. Ch	1906t td					
RELINQUISHED BY: (SIGNATURE)		1		RECEIVED BY: (SIGNATURE)	(j)			DATE	TIME		₹ ₾	AM PM
RELINQUISHED BY: (SIGNATURE)				RECEIVED BY (SIGNATURE)	E)	111		DATE:	TIME		∢α.	P M
RELINQUISHED BY: (SIGNATURE)				RECEIVE (SIGNATU	RECEIVED BY LAB	M	Monume	DATE:	TIME	2/5	∀ €	AM

B 30F3

Signature Commercial Report to: Richard Hart Results needed by: (Rush T/A only) My THE WAS CON Fax: (516) 328-1381 Address: 1983 Marcus Avenue, Ste 109 Lake Success, NY 11042 Tel: (516) 328-1194 EPM, Inc. Client:

59-01 Central Ave. Farmingdale, NY 11735 Tel: (631) 414-7685 Fax: (631) 414-7688 info@achemlabs.com

EPA: NY01292 NJDEP: NY006 **NYSDOH: 10950** Laboratory Certification IDs: www.achemlabs.com

This Area for Lab Use Only	*	Y Work Order Number/Comments:	Number/Co	omments:		Notes (including P.O. #):	(# O d oi				
Samples received intact?		7					13045 45 4061	r			
Samples properly preserved?	29					4 26	THE STATE OF STATES	bk			_
Samples ambient?				\	\			A old			
Rush turnaround requested?	į,	00	200	/1		Matrix Code: 1-4	Matrix Code: 1-water; 2-soil; 3-sludge; 4-oil; 5-wipe; 6-other	noseA	_		101
Sample Identification/		Containers	San	Sample Information	ation	Matrix Code	Analysis Renuested		_		41O/e
Description/Location	#	Туре	Date	Time	Grab/ Composite	(see apove))sN NH	NH S ₂ H	НСІ	noN
1 FB 3 5	ES P	2 MMBET STEA	date	13:30			5045/3370c/5681 808) Total	Z >x	7 ×	47	
C.W-II	,	1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/4/11	13.00		_	5264/83761/851 18631 Tell		य	ן.	Т
• 50-4	_	6-7- Jumie	1/11/11	13.45	1	1,5	16.3 - 70-19 Se ++ 50 W. 18 1.				X

AM

PM

TIME:

DATE

DATE:

RECEIVED BY LAB:

RELINQUISHED BY: (SIGNATURE)

RELINQUISHED BY: (SIGNATURE)

RELINQUISHED BY (SIGNATURE)

COLLECTED BY: (PRINT NAME)

TIME

DATE

29061

PROJECT NAME DESCRIPTION

RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE)

ANALYTICAL REPORT

Lab Number:

L1103624

Client:

GZA GeoEnvironmental, Inc.

104 West 29th Street, 10th Floor

New York, NY 10001

ATTN:

James Bellew

Phone:

(212) 594-8140

Project Name:

WILLETS POINT

Project Number:

161893.00

Report Date:

03/25/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:

WILLETS POINT

Project Number:

161893.00

Lab Number:

L1103624

Report Date:

03/25/11

Alpha Sample ID

Client ID

Sample Location

Collection Date/Time

L1103624-01

126-G9

WILLETS PT. NY

03/18/11 13:10

Project Name:

WILLETS POINT

Project Number:

161893.00

Lab Number:

L1103624

Report Date:

03/25/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Solids, Total Suspended

L1103624-01 has an elevated detection limit due to the dilution required by the sample matrix.

Flash Point

L1103624-01: The starting temperature of the sample was 65 deg F. Ambient temperature was 72deg F.

Oil & Grease, Hem-Grav

The WG459713-3 MS recovery, performed on L1103624-01, is below the acceptance criteria (67%); however,

Project Name:

WILLETS POINT

Lab Number:

L1103624

Project Number:

161893.00

Report Date:

03/25/11

Case Narrative (continued)

the associated LCS recovery was within criteria. No further action was taken.

The WG459713-4 Laboratory Duplicate RPD, performed on L1103624-01, is above the acceptance criteria (22%); however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Morris

Title: Technical Director/Representative

Date: 03/25/11

ORGANICS

VOLATILES

Project Name: WILLETS POINT

Project Number:

Lab Number:

L1103624

161893.00

Report Date:

03/25/11

SAMPLE RESULTS

Lab ID:

L1103624-01

Client ID:

126-G9

Sample Location:

WILLETS PT. NY Water

Matrix: Analytical Method:

5,624

Analytical Date:

03/22/11 11:07

Analyst:

TT

Date Collected:

03/18/11 13:10

Date Received:

03/18/11

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
2-Chloroethylvinyl ether	ND		ug/l	10	0.62	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Pentafluorobenzene	92		80-120	
Fluorobenzene	96		80-120	
4-Bromofluorobenzene	109		80-120	

Project Name:

WILLETS POINT

Lab Number:

L1103624

Project Number:

161893.00

Report Date:

03/25/11

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

5,624

03/22/11 07:31

Analyst:

TT

Parameter	Result	Qualifier	Units		RL	MDL
/olatile Organics by GC/MS - W	estborough La	ab for sample(s):	01	Batch:	WG458	987-10
Methylene chloride	ND		ug/l		5.0	0.65
1,1-Dichloroethane	ND		ug/l		1.5	0.36
Chloroform	ND		ug/l		1.5	0.34
Carbon tetrachloride	ND		ug/i		1.0	0.38
1,2-Dichloropropane	ND		ug/l		3.5	0.32
Dibromochloromethane	ND		ug/l		1.0	0,37
1,1,2-Trichloroethane	ND		ug/l		1.5	0.40
2-Chloroethylvinyl ether	ND		ug/l		10	0.62
Tetrachloroethene	ND		ug/l		1.5	0.44
Chlorobenzene	ND		ug/l		3.5	0.38
Trichlorofluoromethane	ND		ug/l		5.0	0.37
1,2-Dichloroethane	ND		ug/l		1.5	0.42
1,1,1-Trichloroethane	ND		ug/l		2.0	0.30
Bromodichloromethane	ND		ug/l		1.0	0.35
trans-1,3-Dichloropropene	ND		ug/l		1.5	0.35
cis-1,3-Dichloropropene	ND		ug/l		1.5	0.35
Bromoform	ND		ug/l		1.0	0.34
1,1,2,2-Tetrachloroethane	ND		ug/l		1.0	0.41
Benzene	ND		ug/l		1.0	0.36
Toluene	ND		ug/l		1.0	0.51
Ethylbenzene	ND		ug/l		1.0	0.38
Chloromethane	ND		ug/l		10	0.89
Bromomethane	ND		ug/l		5.0	1.3
Vinyl chloride	ND		ug/l		2.0	0.35
Chloroethane	ND		ug/l		2.0	0.36
1,1-Dichloroethene	ND		ug/l		1.0	0.33
trans-1,2-Dichloroethene	ND		ug/l		1.5	0.40
cis-1,2-Dichloroethene	ND		ug/l		1.0	0.38
Trichloroethene	ND		ug/l		1.0	0.37
1,2-Dichlorobenzene	ND		ug/l		5.0	0.75
1,3-Dichlorobenzene	ND		ug/l		5.0	0.93

Project Name:

WILLETS POINT

Lab Number:

L1103624

Project Number:

161893.00

Report Date:

03/25/11

Method Blank Analysis Batch Quality Control

Analytical Method:

5,624

Analytical Date:

03/22/11 07:31

Analyst:

TT

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by GC/MS -	Westborough La	ab for sample(s):	01	Batch:	WG4589	987-10
1,4-Dichlorobenzene	ND		ug/l		5.0	0,85
p/m-Xylene	ND		ug/l		2.0	0.77
o-xylene	ND		ug/l		1.0	0.34
Xylene (Total)	ND		ug/l		2.0	0.63
Styrene	ND		ug/l		1.0	0.34
Acetone	ND		ug/l		10	1.8
Carbon disulfide	ND		ug/l		5.0	0.90
2-Butanone	ND		ug/l		10	2.2
Vinyl acetate	ND		ug/l		20	2.9
4-Methyl-2-pentanone	ND		ug/l		10	2.4
2-Hexanone	ND		ug/l		10	2.5
Acrolein	ND		ug/l		8.0	1.9
Acrylonitrile	ND		ug/l		10	1.9
Methyl tert butyl ether	ND		ug/l		20	0.58
Dibromomethane	ND		ug/l		1.0	0.18
1,4-Dioxane	ND		ug/l		2000	490
Tert-Butyl Alcohol	ND		ug/l		100	6.0
Tertiary-Amyl Methyl Ether	ND		ug/l		20	0.26

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Pentafluorobenzene	96		80-120	
Fluorobenzene	98		80-120	
4-Bromofluorobenzene	109		80-120	

WILLETS POINT

161893.00

Project Number: Project Name:

L1103624 Lab Number:

03/25/11

Report Date:

"Recovery Qual "Recovery Qual Limits"	
Parameter %	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	9
Volatile Organics by GC/MS - Westborough Lab Associated sample(s):	Lab Associated		01 Batch: W	Batch: WG458987-9					F 12-
Methylene chloride	75		ā.		1-221	30		30	
1,1-Dichloroethane	106		Ñ		59-155	P)		30	
Chloroform	102		•		51-138	<u>#</u>		30	
Carbon tefrachloride	110		¥		70-140	.*		30	
1,2-Dichloropropane	105		×		1-210	•		30	
Dibromochloromethane	106		9		53-149	ą		30	
1,1,2-Trichloroethane	110				52-150	٠		30	
2-Chloroethylvinyl ether	143		,		1-305	•		30	
Tetrachloroethene	126		×		64-148	*		30	
Chlorobenzene	104		Ж		37-160	H.		30	
Trichlorofluoromethane	86		3		17-181	iğ.		30	
1,2-Dichloroethane	95				49-155	100		30	
1,1,1-Trichloroethane	110		•)		52-162	Ų		30	
Bromodichloromethane	102		•		35-155	1		30	
trans-1,3-Dichloropropene	112		ij.		17-183	×		30	
cis-1,3-Dichloropropene	109		(i		1-227	3		30	
Bromoform	103		9		45-169	ä		30	
1,1,2,2-Tetrachloroethane	94		•		46-157	12		30	
Benzene	108		ı		37-151	•		30	
Toluene	110				47-150	ĸ		30	
Ethylbenzene	115		ĵį.		37-162	٠		30	

WILLETS POINT

161893.00

Project Number: Project Name:

L1103624 Lab Number:

03/25/11

Report Date:

Parameter %Re	6Recovery	Qual	"Recovery	Qual	Limits

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	ì
Volatile Organics by GC/MS - Westborough Lab Associated sample(s):	Lab Associated	sample(s):	01 Batch: WG458987-9	G458987-9					
Chioromethane	174				1-273	ũ		30	
Bromomethane	81		340		1-242	(19)		30	
Vinyl chloride	83				1-251	£		30	
Chloroethane	ш		.0		14-230	i.		30	
1,1-Dichloroethene	88		ı		1-234	ě		30	
trans-1,2-Dichloroethene	117		ж		54-156	(<u>@</u>		30	
cis-1,2-Dichloroethene	106		ā		60-140			30	
Trichloroethene	116		15		71-157	şî.		30	
1,2-Dichlorobenzene	108		ĸ.		18-190	Æ		30	
1,3-Dichlorobenzene	107		×		59-156	Œ		30	
1,4-Dichlorobenzene	113		•		18-190	Œ.		30	
p/m-Xylene	112		19		40-160	9		30	
o-Xylene	107		110		40-160	100		30	
XYLENE (TOTAL)	110		Ē		40-160	i ()		30	
Styrene	150				40-160			30	
Acetone	29		×		40-160	*		30	
Carbon disulfide	88		3		40-160	()		30	
2-Butanone	102		D#		40-160	a.		30	
Vinyl acetate	88		•		40-160	(0)		30	
4-Methyl-2-pentanone	113		E		40-160	•))		30	
2-Hexanone	108		î		40-160	×		30	

WILLETS POINT

161893.00

Project Number: Project Name:

L1103624 Lab Number:

03/25/11 Report Date:

"Recovery	Limits	
	Qual	
CSD	"Recovery	
	Qual	
rcs	%Recovery	
	Parameter	

RPD Limits

Qual

RPD

WG458987-9
Batch:
5
Associated sample(s):
Lab
- Westborough
y GC/MS
Organics b
Volatile (

30		30
ã		ř
40-160	40-160	70-130
9	12#2	•/
22	88	
Acrolein		Dibromomethane

rrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
afluorobenzene	102				80-120
robenzene	102				80-120
omofluorobenzene	103				80-120

WILLETS POINT

161893.00 **Project Number:**

Project Name:

L1103624 Lab Number:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01	Westborough	Lab Associ	ated sample		satch ID: \	QC Batch ID: WG458987-3		mple: L11	QC Sample: L1103439-01		t iÖ: №	Client ID: MS Sample
Methylene chloride	Q.	20	12	28		<u>(a</u>)	000		1-221	500		30
1,1-Dichloroethane	Q	20	16	80		š			59-155			30
Chloroform	Ð	20	16	78		ž	*		51-138	÷		30
Carbon tetrachloride	Q	20	18	68		ij	: • :		70-140	e		30
1,2-Dichloropropane	Q	20	16	78		ž	= a		1-210			30
Dibromochloromethane	Q	20	17	83		à			53-149	(0)		30
1,1,2-Trichloroethane	g	20	17	85		Ē	•12		52-150	e		30
2-Chloroethylvinyl ether	Q.	20	17	48		¥	×		1-305	•		30
Tetrachloroethene	Q	20	18	06			(10)		64-148	(100)		30
Chlorobenzene	Q	20	16	78					37-160	×		30
Trichlorofluoromethane	Q.	20	12	62)	34		17-181	()		30
1,2-Dichloroethane	<u>N</u>	20	15	22		ě	•0:		49-155	•0		30
1,1,1-Trichloroethane	g	20	16	82		×			52-162	×		30
Bromodichloromethane	Q	20	16	82		y	7.00		35-155	(0.0)		30
trans-1,3-Dichloropropene	Q	20	15	11		r	M.		17-183	×		30
cis-1,3-Dichloropropene	9	20	14	17		¥			1-227	х		30
Bromoform	Q	20	15	11		0.0	((•))		45-169	(10)		30
1,1,2,2-Tetrachloroethane	Q	20	16	8/			•2		46-157	к		30
Benzene	Q	20	16	6/		,	*		35-151	×		30
Toluene	ð	20	16	80		8.0	((•))		47-150			30
Ethylbenzene	Q	20	16	82		٠	*:		37-162	,		30

WILLETS POINT Project Name:

161893.00 **Project Number:**

L1103624 Lab Number:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01	- Westborough	Lab Assoc	ated sample		QC Batch ID: WG458987-3	/G458987		QC Sample: L1103439-01		Client ID: MS Sample
Chloromethane	Q	50	19	94		3		1-273	98	30
Вгототетране	Q	20	13	6 4		ř		1-242		30
Vinyl chloride	Q	20	9.0	45			ı	1-251	9	30
Chloroethane	Q	20	£	55		E ₀	•	14-230	Ē	30
1,1-Dichloraethene	Q	20	14	69		ï	I	1-234	,	30
trans-1,2-Dichloroethene	Q	20	17	87		į	•	54-156	ä	30
cis-1,2-Dichloroethene	N N	20	15	75		ï	1	60-140	ĸ	30
Trichloroethene	Q	20	15	9/		i ji	1	71-157	ā	30
1,2-Dichlorobenzene	Q	20	17	83		i.	1	18-190	·e	30
1,3-Dichlorobenzene	Ð	20	16	82		*	•	59-156	*	30
1,4-Dichlorobenzene	Ð	20	16	81		(<u>i</u>	ı	18-190	*	30
p/m-Xylene	S	40	32	80		Ĩ.	•	40-160	·	30
o-Xylene	Q	20	15	9/		į	ı	40-160		30
XYLENE (TOTAL)	Q	09	47	62			•	40-160	306	30
Styrene	Q	20	14	7.1		5	1	40-160	¥	30
Acetone	Ø	20	100	46		# 20	•	40-160	х	30
Carbon disulfide	Q	20	Ξ	26			,	40-160	Rati	30
2-Butanone	Ð	20	38	11		<u>*</u>	ı	40-160	r	30
Vinyl acetate	Ð	40	19.J	47		9	•	40-160	¥	30
4-Methyl-2-pentanone	Q	20	36	74		(0)	1	40-160	500	30
2-Hexanone	<u>Q</u>	20	34	69			•	40-160	•	30

WILLETS POINT

161893.00

Project Number: Project Name:

Lab Number:

L1103624

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	"Recovery	Qual	Found	Found "Recovery Qual Limits	Qual	Limits	RPD Qual	Qual	Limits
Volatile Organics by GC/MS - Westborough Lab Asso	Westborough	Lab Associa	ociated sample(s): 07	_	atch ID: \	QC Batch ID: WG458987-3	-3 QC Sample: L1103439-01	nple: L1	103439-01	Client	D: M	Client ID: MS Sample

ient ID: MS Sample	30	30	30
)1 C	٠	•	•
QC Sample: L1103439-01 Client ID: MS Sample	40-160	40-160	
ω Q	9 0		900
QC Batch ID: WG458987-3			
2 Q	84	64	8
nple(s): (
ted san	19	25	16
ab Associa	40	40	20
Westborough L	ND	ND	ND
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01	Acrolein	Acrylonitrile	Dibromomethane

	MS		MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	Qualifier	% Recovery Qualifier	Qualifier	Criteria	
4-Bromofluorobenzene	103				80-120	
Fluorobenzene	66				80-120	
Pentafluorobenzene	26				80-120	

Lab Duplicate Analysis

Batch Quality Control

WILLETS POINT

161893.00

Project Number: Project Name:

L1103624 03/25/11 Lab Number: Report Date:

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG458987-4 QC Sample: L1103439-01 Client ID: DUP Sample Qual RPD Limits RPD Units **Duplicate Sample** Native Sample Parameter

30

S

/gn

S

9

Benzene

Acceptance Criteria 80-120 80-120 80-120 "Recovery Qualifier "Recovery Qualifier 100 102 107 100 101 4-Bromofluorobenzene Pentafluorobenzene Fluorobenzene Surrogate

METALS

Project Name:

WILLETS POINT

Lab Number:

L1103624

Project Number:

161893.00

Report Date:

03/25/11

Lab ID:

SAMPLE RESULTS

Date Collected:

03/18/11 13:10

Client ID:

L1103624-01

03/18/11

Sample Location:

126-G9 WILLETS PT. NY Date Received:

Matrix:

Water

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	tborough L	_ab									
Molybdenum, Total	0.01	J	mg/l	0.05	0.004	1	03/19/11 12:3	0 03/23/11 15:2	4 EPA 3005A	19,200.7	Al

Project Name:

WILLETS POINT

Lab Number:

L1103624

03/25/11

Project Number: 161893.00

Report Date:

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westborough	Lab fo	r sample(s):	01 Ba	itch: Wo	G45955	5-1				
Molybdenum, Total	ND		mg/l	0.05	0.004	1	03/19/11 12:30	03/23/11 15:01	1 19,200.7	Al

Prep Information

Digestion Method: EPA 3005A

WILLETS POINT

161893.00

Project Number:

Project Name:

L1103624 Lab Number:

Report Date:

03/25/11

LCSD %Recovery Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG459555-2 Qual LCS %Recovery Parameter

Molybdenum, Total

86

85-115

RPD Limits

Qual

RPD

%Recovery Limits

Qual

WILLETS POINT

161893.00

Project Number: Project Name:

Lab Number:

L1103624

03/25/11

Report Date:

20

75-125

88

0.98

0.013

Molybdenum, Total

RPD Qual Limits QC Sample: L1102712-34 Client ID: MS Sample MSD Recovery %Recovery Qual Limits MS MSD WSD %Recovery Qual Found Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG459555-4 MS Found MS Added Native Sample Parameter

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1103624 03/25/11 Report Date: WILLETS POINT

161893.00

Project Number: Project Name:

RPD Limits Total Metals - Westborough Lab Associated sample(s): 01 QC Batch ID: WG459555-3 QC Sample: L1102712-34 Client ID: DUP Sample Qual RPD Units **Duplicate Sample** Native Sample Parameter

NC

l/gm

9

0.01

Molybdenum, Total

8

ALPHA

INORGANICS & MISCELLANEOUS

Project Name:

WILLETS POINT

Lab Number:

L1103624

Project Number: 161893.00

Report Date:

03/25/11

SAMPLE RESULTS

Lab ID:

L1103624-01

Client ID:

126-G9

Sample Location: WILLETS PT. NY

Matrix:

Water

Date Collected:

03/18/11 13:10

Date Received:

03/18/11

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab									
Solids, Total Suspended	160		mg/l	15	NA	3	5 4 78	03/22/11 09:35	30,2540D	DW
Solids, Total Settleable	1.5		mi/I	0.10	NA	1	15.1	03/18/11 22:45	30,2540F	KK
pH	6.6		SU		NA	1	:#)	03/18/11 21:00	1,9040B	KK
Nitrogen, Nitrate/Nitrite	0.30		mg/l	0.10	0.02	1	*	03/22/11 23:32	30,4500NO3-F	TH
Oil & Grease, Hem-Grav	7.7		mg/l	4.0	4.0	1	03/22/11 13:00	03/22/11 18:15	74,1664A	JO
Non-Polar Material by EPA 1664	3.64	J	mg/l	4.00	0.860	1	03/22/11 13:00	03/24/11 13:30	74,1664A	JO
Flash Point	>150		deg F	70	NA	1	2	03/22/11 13:00	1,1010	ST
General Chemistry										
Laboratory Temperature during pH test	24		deg. C				¥	03/18/11 21:00	41	ED

Project Name:

WILLETS POINT

Lab Number:

L1103624

03/25/11

Project Number: 161893.00

Report Date:

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifiar	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
raiameter	ixesuit W	uaiiiici	Office	IXL	MDL					Allalyo
General Chemistry - West	borough Lab	for sam	ple(s): 01	Batch:	WG45	9610-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	*	03/22/11 09:35	30,2540D	DW
General Chemistry - West	borough Lab	for sam	ple(s): 01	Batch:	WG45	9713-2				
Oil & Grease, Hem-Grav	ND		mg/l	4.0	4.0	1	03/22/11 13:00	03/22/11 18:15	74,1664A	JO
General Chemistry - Westl	borough Lab	for sam	ple(s): 01	Batch:	WG45	9715-2				
Non-Polar Material by EPA 1664	ND		mg/l	4.00	0.860	1	03/22/11 13:00	03/24/11 13:30	74,1664A	JO
General Chemistry - West	borough Lab	for sam	ple(s): 01	Batch:	WG45	9773-2				
Nitrogen, Nitrate/Nitrite	0.02	J	mg/l	0.10	0.02	1	*	03/22/11 23:12	30,4500NO3-	F TH

Project Name:	WILLETS POINT			Datch Quality Control	iity conire	_	Lab Number:	nber:	L1103624
Project Number:	161893.00						Report Date:	Date:	03/25/11
	:3	rcs		CSD		%Recovery			
Parameter		"Recovery	Qual	"Recovery	Qual	Limits	RPD Qual	Qual	RPD Limits

imits	3									
RPD Limits		5			ā	18		34		20
Qual										
RPD		ŧ				040		300		96
%Recovery Limits		99-101				78-114		64-132		90-110
Qual										
LCSD %Recovery	Batch: WG459329-1	Œ	Batch: WG459710-1	1100	Batch: WG459713-1	9#02	Batch: WG459715-1	100	Batch: WG459773-1	ĸ₩
LCS %Recovery Qual	Associated sample(s): 01	100		104	Associated sample(s): 01	06	Associated sample(s): 01	80	Associated sample(s): 01	96
Parameter	General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG459329-1	H	General Chemistry - Westborough Lab Associated sample(s): 01	Flash Point	General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG459713-1	Oil & Grease, Hem-Grav	General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG459715-1	Non-Polar Material by EPA 1664	General Chemistry - Westborough Lab Associated sample(s): 01	Nitrogen, Nitrate/Nitrite

WILLETS POINT

161893.00

Project Number: Project Name:

L1103624 Lab Number:

Parameter 6	Native Sample	MS Added	MS Found	MS MS MSFound WRecovery Qual Found	Qual Fo	MSD Found	MSD Recovery RPD Qual Limits	R Qual	Recovery Limits	RPD G	I Iual L	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG459713-3 QC Sample: L1103624-01 Client ID: 126-G9	Lab Associ	ated sample	(s): 01	QC Batch ID: W	G459713-	3 QC	Sample: L110;	3624-01	Client ID): 126-G	6	
Oil & Grease, Hem-Grav	7.7	40.8	35	29	ø		ø		78-114	580		18
General Chemistry - Westborough Lab Associated sample(s): 01	Lab Associ	ated sample		QC Batch ID: WG459715-3 QC Sample: L1103624-01 Client ID: 126-G9	G459715-	3 00	Sample: L110;	3624-01	Client ID	126-G	6	
Non-Polar Material by EPA 1664	3.64J	20.4	16.6	8		ř.			64-132			8
General Chemistry - Westborough Lab Associated sample(s): 01	Lab Associ	ated sample	(s): 01	QC Batch ID: WG459773-3 QC Sample: L1102712-42 Client ID: MS Sample	G459773-	3 00	Sample: L110;	2712-42	Client ID	: MS Sa	ample	
Nitrogen, Nitrate/Nitrite	0.09	4	3.9	98))			80-120	ı		20

Lab Duplicate Analysis Batch Quality Control

WILLETS POINT

161893.00

Project Number: Project Name:

L1103624 03/25/11 Lab Number: Report Date:

Parameter	Native Sample	ole Duplicate Sample	Sample Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Associated sample(s):	2	QC Batch ID: WG459329-2	2 QC Sample: L1103595-01 Client ID: DUP Sample	3595-01 Clie	nt ID: DUP	Sample	
H	6.9	6.9	Sn	0		S	
General Chemistry - Westborough Lab Associated sample(s)	. 0	QC Batch ID: WG459610-2	2 QC Sample: L1103624-01 Client ID: 126-G9	3624-01 Clie	int ID: 126-	69	
Solids, Total Suspended	160	190	l/gm	17		32	
General Chemistry - Westborough Lab Associated sample(s)	. 01	QC Batch ID: WG459713-4	4 QC Sample: L1103624-01 Client ID: 126-G9	3624-01 Clie	int ID: 126-	69	
Oil & Grease, Hem-Grav	7.7	6.2	l/bm	22	σ	18	
General Chemistry - Westborough Lab Associated sample(s):		01 QC Batch ID: WG459715-4	4 QC Sample: L1103624-01 Client ID: 126-G9	3624-01 Clie	int ID: 126-	69	
Non-Polar Material by EPA 1664	3.64J	2.53J	l/gm =	Ö		8	
General Chemistry - Westborough Lab Associated sample(s):		01 QC Batch ID: WG459773-4	4 QC Sample: L1102712-42 Client ID: DUP Sample)2712-42 Clie	ant ID: DUP	Sample	
Nitrogen, Nitrate/Nitrite	C60.0	0.09	l/gm	S		20	

Project Name:

WILLETS POINT

Project Number: 161893.00

Lab Number: L1103624

Report Date: 03/25/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Reagent H2O Preserved Vials Frozen on:

NA

Cooler Information Custody Seal

Cooler

Α

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1103624-01A	Vial Na2S2O3 preserved	Α	N/A	2	Υ	Absent	624(7)
L1103624-01B	Vial Na2S2O3 preserved	Α	N/A	2	Υ	Absent	624(7)
L1103624-01C	Vial Na2S2O3 preserved	Α	N/A	2	Υ	Absent	624(7)
L1103624-01D	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	TSS-2540(7)
L1103624-01E	Plastic 1000ml unpreserved	Α	7	2	Υ	Absent	TSETS-2540(2)
L1103624-01F	Amber 1000ml unpreserved	···A	7	2	Υ	Absent	FLASH(),PH-9040(1)
L1103624-01G	Plastic 500ml H2SO4 preserved	Α	<2	2	Υ	Absent	NO3/NO2-4500(28)
L1103624-01H	Plastic 500ml HNO3 preserved	Α	<2	2	Υ	Absent	MO-UI(180)
L1103624-01I	Amber 1000ml HCl preserved	Α	N/A	2	Υ	Absent	OG-1664(28)
L1103624-01J	Amber 1000ml HCl preserved	Α	N/A	2	Υ	Absent	OG-1664(28)
L1103624-01K	Amber 1000ml HCl preserved	Α	N/A	2	Υ	Absent	NYTPH-1664(28)
L1103624-01L	Amber 1000ml HCl preserved	Α	N/A	2	Υ	Absent	NYTPH-1664(28)
L1103624-01X	Amber 1000ml unpreserved	Α	7	2	Υ	Absent	FLASH(),PH-9040(1)

Project Name:WILLETS POINTLab Number:L1103624Project Number:161893.00Report Date:03/25/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS -Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD · Laboratory Control Sample Duplicate: Refer to LCS.

MDL • Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC -Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL • Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration.

The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The
 result should be considered estimated.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P . The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when

Report Format: DU Report with "J" Qualifiers

Project Name:

WILLETS POINT

Lab Number:

L1103624

Project Number:

161893.00

Report Date:

03/25/11

Data Qualifiers

the sample concentrations are less than 5x the RL. (Metals only.)

Analytical results are from sample re-analysis.

RE -Analytical results are from sample re-extraction.

 Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL). This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND -Not detected at the method detection limit (MDL) for the sample.

Report Format:

DU Report with "J" Qualifiers

Project Name:

Project Number:

WILLETS POINT

161893.00

Lab Number:

L1103624

Report Date:

03/25/11

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised February 23, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-B, 4500F-C, 4500NH3-B, 4500Norg-B, 4500NOrg-B, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited. Drinking Water* (<u>Inorganic Parameters</u>: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, 9050A, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3580A, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection <u>Certificate/Lab ID</u>: MA935. *NELAP Accredited. Drinking Water* (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270C-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 7196A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 8270C-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B.. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (Organic Parameters: EPA 524.2)

Non-Potable Water (Inorganic Parameters: EPA 1312. Organic Parameters: EPA 3510C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B,

3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (Inorganic Parameters: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnaphthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.